- Cho tam giác ABC vuông ở A biết góc B = 30o cạnh huyền BC = a (đơn vị độ dài) (a > 0). Tính tỉ số lượng giác của góc A và góc C
- Cho tam giác MNP vuông cân ở M, biết cạnh MN = b (đơn vị độ dài). Tính tỉ số lượng giác góc N và góc P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Bài 8: Vì em nhắn tin nhờ cô giảng bài 8 nên cô chỉ giảng bài 8 thôi nhé
Gọi các cạnh góc vuông, cạnh huyền của tam giác cần tìm lần lượt là: a; b; c
Theo bài ra ta có: a+b+c =36; \(\dfrac{a}{b}\) = \(\dfrac{3}{4}\)
\(\dfrac{a}{b}\) = \(\dfrac{3}{4}\) ⇒ \(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) ⇒ \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{a^2+b^2}{9+16}\) (1)
Vì tam giác vuông nên ta theo pytago ta có: a2 + b2 = c2 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{c^2}{25}\)
⇒ \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) = \(\dfrac{a+b+c}{3+4+5}\) = \(\dfrac{36}{12}\) = 3
a = 3.3 = 9 (cm)
b = 3.4 = 12 (cm)
c = 3.5 = 15 (cm)
Kết luận: độ dài cạnh bé của góc vuông là: 9 cm
dộ dài cạnh lớn của góc vuông là 12 cm
độ dài cạnh huyền là 15 cm
Bài 9:
a,Gọi độ dài cạnh góc vuông là: a
Theo pytago ta có: a2 + a2 = 22 = 4 ⇒ 2a2 = 4 ⇒ a2 = 2 ⇒ a = \(\sqrt{2}\)
b, Gọi độ dài cạnh góc vuông là :b
Theo pytago ta có:
b2 + b2 = 102 =100 ⇒ 2b2 = 100 ⇒ b2 = 50⇒ b = 5\(\sqrt{2}\)
Bài 8 cô làm rồi nhé.
Bài 10 ; Gọi độ dài các cạnh góc của tam giác vuông lần lượt là:
a; b theo bài ra ta có:
\(\dfrac{a}{5}\) = \(\dfrac{b}{12}\) \(\Rightarrow\) \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{a^2+b^2}{25+144}\) (1)
Theo pytago ta có: a2 + b2 = 522 = 2704 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{2704}{169}\) = 16
⇒ a2 = 25.16 = (4.5)2 ⇒ a = 20
b2 = 144.16 = (12.4)2 ⇒ b = 48
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Bài 1) Vì B = 30°
=》sinB = 1/2 (tính chất )
=》cosB = \(\sqrt{ }\)3/2 ( tính chất )
=》 tanB = \(\sqrt{ }\)3/3( tính chất )
=》 cotB = \(\sqrt{ }\)3( tính chất )
Lại có B + C = 90°
=》 sinB = cosC = 1/2
=》 cosB = sinC = \(\sqrt{ }\)3/2
=》tanB = cotC = \(\sqrt{ }\)3/3
=》cotB = tanC = \(\sqrt{ }\)3
SinA = BC/BC = 1
CosA có thể bằng AB/BC hay AC/BC (loại)
TanA có thể bằng BC/AB hay BC/AC (loại)
CotA có thể bằng AB/BC hay AC/BC (loại)
Bài 2) Vì \(\Delta\)MNP vuông cân tại M
=》 MN = MP = b
Áp dụng định lý Py ta go vào \(\Delta\)ABC có :
NM2 +MP2 = NP2
=》 NP2 =b2 + b2 =2b2
=》NP = \(\sqrt{ }\)2b2
SinN = MP/NP = b/\(\sqrt{ }\)2b2 = \(\sqrt{ }\)2/2
CosN = NM/NP = b/\(\sqrt{ }\)2b2 = \(\sqrt{ }\)2/2
TanN = MP/NM = b/b =1
CotN = NM/MP = b/b = 1
Vì N + P =90°
=》sinN = cosP = \(\sqrt{ }\)2/2
=》cosN = sinP =\(\sqrt{ }\)2/2
=》tanN = cotP = 1
=》cotN = tanP = 1