K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

Đề yêu cầu tìm GTNN hả bạn :)

| x - 7 | + | x + 2 |

= | -( x - 7 ) | + | x + 2 |

= | 7 - x | + | x + 2 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

| 7 - x | + | x + 2 | ≥ | 7 - x + x + 2 | = | 9 | = 9

Dấu " = " xảy ra khi ab ≥ 0

tức là ( 7 - x )( x + 2 ) ≥ 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}7-x\ge0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-x\ge-7\\x\ge-2\end{cases}}\Rightarrow\hept{\begin{cases}x\le7\\x\ge-2\end{cases}}\Rightarrow-2\le x\le7\)

2/ \(\hept{\begin{cases}7-x\le0\\x+2\le0\end{cases}}\Rightarrow\hept{\begin{cases}-x\le-7\\x\le-2\end{cases}}\Rightarrow\hept{\begin{cases}x\ge7\\x\le-2\end{cases}}\)( loại )

Vậy GTNN của biểu thức = 9 , đạt được khi -2 ≤ x ≤ 7

5 tháng 7 2021

Đk:\(3\le x\le7\)

Có \(\left(\sqrt{x-3}+\sqrt{7-x}\right)^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4;\forall3\le x\le7\)

\(\Leftrightarrow\sqrt{x-3}+\sqrt{7-x}\ge2\) (I)

Có \(6x-7-x^2=2-\left(x^2-6x+9\right)=2-\left(x-3\right)^2\le2\) (II)

Từ (I) và (II) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{\left(x-3\right)\left(7-x\right)}=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow x=3\) (tm)

Vậy...

NV
5 tháng 7 2021

ĐKXĐ: \(3\le x\le7\)

Ta có:

\(VT=\sqrt{x-3}+\sqrt{7-x}\ge\sqrt{x-3+7-x}=2\)

\(VP=2-\left(x-3\right)^2\le2\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)=0\\\left(x-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

26 tháng 11 2019

\(x^2+y^2\ge2\sqrt{x^2y^2}\ge2xy\)

\(x^2y^2+1\ge2\sqrt{x^2y^2.1}\ge2xy\)

\(\Rightarrow x^2+y^2+x^2.y^2+1\ge2xy+2xy=4xy\)

14 tháng 12 2017

2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

theo yêu cầu của bạn thì đến đâ mk làm theo cách này

ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)

cách 2

\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

\(\Rightarrowđpcm\)

27 tháng 8 2023

giúp mình với

5 tháng 7 2016

Mình nghĩ đề bài phải là tìm giá trị lớn nhất. Vì giả sử : \(P\left(x\right)=\sqrt{x-2}+\sqrt{4-x}\) , ta cần tìm x sao cho P(x) = 0. Không thể vì P(x) vô nghiệm.

TÌM GIÁ TRỊ LỚN NHẤT : 

Áp dụng bất đẳng thức Bunhiacopxki : \(P^2=\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)^2\le\left(1^2+1^2\right)\left(x-2+4-x\right)\)

\(\Rightarrow P^2\le4\Rightarrow P\le2\) . Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}2\le x\le4\\\sqrt{x-2}=\sqrt{4-x}\end{cases}\)\(\Leftrightarrow x=3\)

Vậy Max P = 2 <=> x = 3

 

21 tháng 1 2021

ĐKXĐ:...

\(VT\le\dfrac{\left(x^2+x-1\right)+1}{2}+\dfrac{x-x^2+1+1}{2}=x+1\)

\(=2x-x+1\le x^2+1-x+1=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2+x-1=1\\x-x^2+1=1\end{matrix}\right.\Leftrightarrow x=1\)

29 tháng 9 2016

\(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)