K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2022

a: =-(x^2-2x-7)

=-(x^2-2x+1-8)

=-(x-1)^2+8<=8

Dấu = xảy ra khi x=1

b: \(B=\left(x-y\right)\left[-2\left(x-y\right)+5\right]+14\)

\(=-2\left(x-y\right)^2+5\left(x-y\right)+14\)

\(=-2\left[\left(x-y\right)^2-\dfrac{5}{2}\left(x-y\right)-7\right]\)

\(=-2\left[\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{137}{16}\right]\)

\(=-2\left(x-y-\dfrac{5}{4}\right)^2+\dfrac{137}{8}< =\dfrac{137}{8}\)

Dấu = xảy ra khi x=y+5/4

26 tháng 8 2019

Đề sai, cho đk x mà ko có đk y sao áp dụng cauchy bây giờ:v

5 tháng 8 2020

a, (y-x^2)^2:(y-x^2) =y-x^2

b, (x-y^2)^2:(y-x^2)=x-y^2

học tốt

5 tháng 8 2020

Bài làm:

a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)

\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)

\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)

\(=y-x^2\)

b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)

\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)

\(=x-y^2\)

4 tháng 5 2020

\(2y^2-y^2+x+y+1=x^2+xy+y^2\)

\(\Rightarrow x+y-x^2-xy=-1\)

\(\Rightarrow x-x^2+y-xy=-1\)

\(\Rightarrow x\left(1-x\right)+y\left(1-x\right)=-1\)

\(\Rightarrow\left(1-x\right)\left(x+y\right)=-1\)

TH1:

\(\Rightarrow\hept{\begin{cases}1-x=1\\x+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\0+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

TH2:

\(\Rightarrow\hept{\begin{cases}1-x=-1\\x+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\x+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\-2+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)

vậy ....

4 tháng 5 2020

í chết cha rồi nhầm tí .

sửa lại chỗ TH1 và TH2:

TH1:

\(\Rightarrow\hept{\begin{cases}1-x=1\\x+y=-1\end{cases}}\)

TH2:

\(\Rightarrow\hept{\begin{cases}1-x=-1\\x+y=1\end{cases}}\)

đến đây bạn tự làm nốt nha

19 tháng 9 2016

b)

\(-x^2+2x-6=-\left(x^2-2x+6\right)\)

\(=-\left(x^2-2x+1+5\right)=-\left(x+1\right)^2-6\)

vì \(\left(x-1\right)^2\ge0\)với mọi \(x\in R\)

nên \(-\left(x-1\right)^2\le0\)với mọi \(x\in R\)

do đó \(-\left(x-1\right)-5< 0\)với mọi \(x\in R\)

vậy \(-x^2+2x-6< 0\)với mọi \(x\in R\)

19 tháng 9 2016

a) \(x^2+2x+7=x^2+2x+1+6\)

                            \(=\left(x+1\right)^2+6\)

vì \(\left(x+1\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x+1\right)^2+6>0\)với mọi \(x\in R\)

vậy \(x^2+2x+7>0\)với mọi \(x\in R\)

20 tháng 8 2016

b)B=27y^3-27y^2x+9yx^2-x^3 
= 27 . (1/3x)^3 - 27.(1/3x)².x + 9.1/3.x.x^2 - x^3 
= x^3 - 3x^3 + 3x^3 - x^3 
= 0

d) D=50y^2+x(x-2y)+14y(x-y) 

=50y^2 +x^2 -2xy +14xy -14y^2 

=36y^2 +x^2 +12xy 

=(6y + x)^2 

=81