Tìm x thuộc N
x15=x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu n là số tự nhiêu thì n bắt đầu từ 0 và ko có kết thúc
nhân n vời 15 ta đc
nếu n=0 thì nx15=0x15=0(0<30)chọn
nếu n=1 thì nx15=1x15=15(15<30)chọn
nếu n=2 thì nx15=2x15=30(30=30)ko chọn
còn các số lớn hơn 2 thì chắc chắn khi nhân với 15 sẽ lớn hơn 30 rùi
vậy n=0 hoặc 1
a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)
b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)
c: Để A=3/4 thì 4x-8=3x+6
=>x=14
d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)
Bài 4:
a. Ta thấy: $x^2-x+2=(x-\frac{1}{2})^2+1,75>0$ với mọi $x$.
Do đó để $B=\frac{x^2-x+2}{x-3}<0$ thì $x-3<0$
$\Leftrightarrow x<3$
b.
$B=\frac{x(x-3)+2(x-3)+8}{x-3}=x+2+\frac{8}{x-3}$
Với $x$ nguyên, để $B$ nguyên thì $x-3$ phải là ước của 8.
$\Rightarrow x-3\in\left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow x\in \left\{4; 2; 5; 1; -1; 7; 11; -5\right\}$
Bài 5:
\(\frac{\frac{x}{x-y}-\frac{y}{x+y}}{\frac{y}{x-y}+\frac{x}{x+y}}=\frac{\frac{x(x+y)-y(x-y)}{(x-y)(x+y)}}{\frac{y(x+y)+x(x-y)}{(x-y)(x+y)}}\)
\(=\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}=\frac{x^2+y^2}{x^2+y^2}=1\)
( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2
Lời giải:
$x^2+16=25^a=(5^a)^2$
$\Rightarrow 16=(5^a)^2-x^2=(5^a-x)(5^a+x)$
$\Rightaarrow 5^a+x\in Ư(16)$
Mà $5^a+x\geq 2$ với mọi $a,x\in\mathbb{N}^*$
$\Rightarrow 5^a+x\in\left\{2; 4;8;16\right\}$
$\Rightarrow 5^a-x\in\left\{8; 4; 2; 1\right\}$
Vì $5^a+x> 5^a-x$ nên $(5^a+x, 5^a-x)\in \left\{(8,2), (16,1)\right\}$
$\Rightarrow (a,x)=(1,3)$
a: Để B nguyên thì x^2+1+2 chia hết cho x^2+1
=>\(x^2+1\in\left\{1;2\right\}\)
hay \(x\in\left\{0;1;-1\right\}\)
b: \(B=\dfrac{x^2+3}{x^2+1}=1+\dfrac{2}{x^2+1}< =1+2=3\)
=>0<=B<=3
B=0 thì x^2+3=0(loại)
B=2 thì 2/x^2+1=1
=>x^2+1=2
=>\(x\in\left\{1;-1\right\}\)
B=3 thì 2/x^2+1=2
=>x^2+1=1
=>x=0
x15 = x2
=> x15 - x2 = 0
=> x2(x13 - 1) = 0
=> x2 = 0 hoặc x13 - 1 = 0
=> x = 0 hoặc x = 1
Vậy : ....
x15 = x2
<=> x15 - x2 = 0
<=> x2.x13 - x2.1 = 0
<=> x2( x13 - 1 ) = 0
<=> x2 = 0 hoặc x13 - 1 = 0
<=> x = 0 hoặc x = 1