Cho ∆ABC nhọn, hai đường cao BD và CE. Hãy biểu thị cosA bằng hai cách, từ đó chứng minh ADE ~ ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABD vuông tại D có \(\cos BAD=\dfrac{AD}{AB}\)(1)
Xet ΔACE vuông tại E có \(\cos CAE=\dfrac{AE}{AC}\left(2\right)\)
Từ (1) và (2) suy ra AD/AB=AE/AC
Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
DO đó: ΔADE\(\sim\)ΔABC
a, Xét ∆ ABD và ∆ ACE có:
góc ADB = góc AEC ( = 90°)
Góc A chung
=> ∆ABD ~ ∆ ACE (g- g)
b,
http://vchat.vn/pictures/service/2016/07/clo1468398982.PNG
copy trnag nay roi vao
suy ra góc ADE = góc ABC nhé
A B C E D
Xét tam giác BAD, ta có:
CosA= \(\dfrac{AD}{AB}\) (1)
Xét tam giác CAE, ta có:
CosA= \(\dfrac{AE}{AC}\) (2)
Từ (1) và (2) suy ra:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\) (3)
Ta lại có: góc A : góc chung (4)
Từ (3) và (4) suy ra:
Tam giác ADE ∽ tam giác ABC
Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDClà tứ giác nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng với ΔACB
Suy ra: \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=cos^2A\)
hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)
Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
DO đó ΔADB đồng dạng với ΔAEC
Suy ra: AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng với ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=cos^2A\)
hay \(S_{ADE}=S_{ABC}\cdot cos^2A\)
bạn tham khảo câu hỏi này : https://olm.vn/hoi-dap/detail/216062676408.html
nếu không hiện link mình sẽ gửi qua tin nhắn nhé