Cho ΔABC có 3 góc nhọn. Từ một điểm I thuộc miền trong tam giác kẻ IH, IK, IL lần lượt vuông góc với BC, CA, AB. Tìm vị trí điểm I sao cho \(AL^2+BH^2+CK^2\) nhỏ nhất.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
23 tháng 9 2018
https://diendantoanhoc.net/topic/88167-tim-v%E1%BB%8B-tri-c%E1%BB%A7a-i-d%E1%BB%83-al2bh2ck2-nh%E1%BB%8F-nh%E1%BA%A5t/
* Tự vẽ hình nha:
Xét các tam giác vuông ALI và AKI ta có:
AL2 + LI2 = AI2 = AK2 + KI2
BH2 + IH2 = BI2 = BL2 + LI2
CK2 + KI2 = CI2 = CH2 + IH2
=> AL2 + BH2 + CK2 = AK2 + CH2 + BL2
=> 2(AL2 + BH2 +CK2) = (AL2 + LB2) + (BH2 + HC2) + (CK2 + KA2)
≥ \(\frac{\left(AL+LB\right)^2}{2}+\frac{\left(BH+HC\right)^2}{2}+\frac{\left(CK+KA\right)^2}{2}=\frac{1}{2}\left(AB^2+BC^2+CA^2\right)\)
=> ( AL2 + BH2 + CK2) ≥ \(\frac{1}{4}\)(AB2 + BC2 + CA2)
Vậy minAL2 + BH2 + CK2 ≥ \(\frac{1}{4}\)(AB2 + BC2 + CA2)
Dấu " = " xảy ra ⇔ I là tâm đường tròn ngoại tiếp ΔABC