K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

Bài làm:

Ta có: \(\left[\left(2x-0,3\right)-2\right]=8\)

\(\Leftrightarrow2x-0,3=10\)

\(\Leftrightarrow2x=10,3\)

\(\Leftrightarrow x=5,15\)

29 tháng 7 2020

\(\left\{\left[2x-0,3\right]-2\right\}=8\)

\(\left[2x-0,3\right]=10\)

= 2x = 10,3

x = 5,15

\(VT=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)

\(VP=\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)

\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\left(1\right)\\\left(x+1\right)^2=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(x=-1\) ( thỏa mãn\(\left(1\right)\) ) 

... 

12 tháng 10 2023

loading...  loading...  

30 tháng 9 2016

\(49\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)

\(4x^2+8x+4+4x^2-4x+1-8x^2+8-11=0\)

\(4x+2=0\)

\(4x=2\)

\(x=-\frac{1}{2}\)

30 tháng 9 2016

<=>4(x2+2x+1)+4x2-4x+1-8x2+8-11=0

<=>4x2+8x+4+4x2-4x+1-8x2+8-11=0

<=>4x+2=0

<=>2(2x+1)=0

<=>2x+1=0

<=>x=-1/2

13 tháng 11 2023

Bài 1:

\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2\cdot50=100\)

\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2\cdot52=104\)

=>A<B

Bài 2:

\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)

=>\(4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)

=>\(4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

=>4x+13=11

=>4x=-2

=>\(x=-\dfrac{1}{2}\)

a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)

\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)

\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)

\(\Leftrightarrow8x^2+4x+11=0\)

\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)

Vì Δ<0 nên phương trình vô nghiệm

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

b.

PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)

\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)

\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)

\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)

$\Leftrightarrow 5x-\frac{15}{4}=0$

$\Leftrightarrow x=\frac{3}{4}$

 

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

24 tháng 9 2021

 chọn lộn môn

Em đăng bài quả môn toán nhận hỗ trợ nhanh nhất nha

22 tháng 12 2019

Ta có: |2x - 1| = |1 - 2x|

Lại có: \(\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)

Mà \(\left|2x+3\right|+\left|1-2x\right|=\frac{8}{3\left(x+1\right)^2+2}\)

\(\Rightarrow\frac{8}{3\left(x+1\right)^2+2}=4\)\(\Rightarrow3\left(x+1\right)^2+2=8\div4\)\(\Rightarrow3\left(x+1\right)^2+2=2\)\(\Rightarrow3\left(x+1\right)^2=2-2=0\)\(\Rightarrow\left(x+1\right)^2=0\)\(\Rightarrow x+1=0\)\(\Rightarrow x=-1\)

1 tháng 1 2020

Sửa bài:

\(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\) với mọi x

\(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{3.0+2}=4\)với mọi x

=> \(\left|2x+3\right|+\left|2x-1\right|\ge\frac{8}{3\left(x+1\right)^2+2}\)với mọi x

=> \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)

<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow}x=-1\)

Vậy S = { -1 }

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined