K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}>\frac{1}{2}\)

\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}>\frac{1}{8}\)( đpcm )

Đẳng thức xảy ra <=> a = b = 1/2 

29 tháng 7 2020

Ta có : a + b > 1 > 0 (1)

Bình phương hai vế : (a + b)2 > 1 => a2 + 2ab + b2 > 1 (2)

Mặt khác (a - b)2 \(\ge\)0 => a2 - 2ab + b2 \(\ge\)0       (3)

Cộng từng vế của (2) hoặc (3) : \(2\left(a^2+b^2\right)>1\)=> a2 + b2 \(\ge\frac{1}{2}\)(4)

Bình phương hai vế của (4) : \(a^4+2a^2b^2+b^4>\frac{1}{4}\)(5)

Mặt khác \(\left(a^2-b^2\right)^2\ge0\)=> a4 + 2a2b2 + b4 \(\ge\)0 (6)

Cộng từng vế (5) và (6) : \(2\left(a^4+b^4\right)>\frac{1}{4}\)=> \(a^4+b^4>\frac{1}{8}\)

11 tháng 5 2017

Bài 2 :

Ta có :

\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a^2b-ab^2+a^2c-ac^2}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)( 1 )

\(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)( 2 )

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\)  ( 3 )

Cộng ( 1 ) , ( 2 ) , ( 3 ) ta được : 

\(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)

\(+ac\left(a-c\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b62\right)}\right]\)

\(+bc\left(b-c\right)\left[\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)

Theo đề bài thì  \(a,b,c>0\)( các biểu thức trong các dấu ngoặc đều không âm ) \(\Leftrightarrow dpcm\)

Thấy đúng thì tk nka !111

12 tháng 5 2017

Bài 3:

ta có :    \(a^4+b^4\ge2a^2b^2\)

Cộng    \(a^4+b^4\)  vào 2 vế ta được:  

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

Ta cũng có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)

                  \(\Leftrightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)

mà theo bài thì   \(a+b>1\)\(\Rightarrow dpcm\)

TK MK NKA !!!

6 tháng 5 2021

Ta có :

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\) ( Bất đẳng thức Bunhiacopski)

Mà lại có \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) (BĐT ....)

\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^2>\frac{1}{8}\cdot1=\frac{1}{8}\)(đpcm)

             KL:.........

13 tháng 9 2019

Ta có: \(\left(a-b\right)^2\ge0\forall a;b\\ \Rightarrow\left(a+b\right)^2-4ab\ge0\\ \Rightarrow\left(a+b\right)^2\ge4ab\\ \Rightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\\ \Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

5 tháng 4 2018

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

<=>\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

<=>\(\left(a+b\right)^2\ge4ab\)

<=>\(a^2+2ab+b^2-4ab\ge0\)

<=>\(a^2-2ab+b^2\ge0\)

<=>\(\left(a-b\right)^2\ge0\)

Luôn đúng với mọi x,y.

Vậy 1/a+1/b>=4/(a+b). Dấu "=" xảy ra<=>x=y

24 tháng 4 2019

a) ta có a>b (cộng 2 và 2 vế )

<=>  a+2 > b+2  (1)
ta có 2>-3 (cộng b vào 2 vế )

b+2>b-3  (2)

từ (1) và (2) => a+2 > b-3

4 tháng 1 2018

Ta cần chứng minh BĐT phụ sau là : Với x,y>0 thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow y\left(x+y\right)+x\left(x+y\right)\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

dấu = xảy ra <=> x=y

Áp dụng BĐT phụ đó , ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)

dấu = xảy ra <=>a=b=1/2

4 tháng 1 2018

\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}=\frac{1+1+1}{ab+a+b+1}=\frac{3}{ab+1+1}\)

\(=\frac{3}{a\left(1-a\right)+2}=\frac{3}{a-a^2+2}=\frac{3}{-\left(a^2-a+\frac{1}{4}\right)+\frac{9}{4}}=\frac{3}{-\left(a-\frac{1}{2}\right)^2+\frac{9}{4}}\)

\(\ge\frac{3}{\frac{9}{4}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)