Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c thuộc R và a.b.c=1.chứng minh \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\)
Giải:Ta có:\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a.c}{abc+ac+c}+\frac{b}{bc+b+abc}+\frac{c}{ca+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{c+1+ac}+\frac{c}{ca+c+1}\)
\(=\frac{ac+1+c}{ac+c+1}=1\)
Suy ra điều phải chứng minh
Bài 3:
a: \(3^x=243\)
nên \(3^x=3^5\)
hay x=5
b: \(x^5=32\)
nên \(x^5=2^5\)
hay x=2
c: \(x^6=729\)
\(\Leftrightarrow x^2=9\)
=>x=3 hoặc x=-3
Từ : \(b^2=a\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Hay \(\frac{a}{b}=\frac{b}{c}=\frac{2016b}{2016c}\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{2016b}{2016c}=\frac{a+2016b}{a+2016c}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{a+2016b}{b+2016c}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}=\left(\frac{a+2016b}{a+2016c}\right)^2\)
Hay \(\frac{a.b}{b.c}=\frac{\left(a+2016b\right)^2}{\left(b+2016c\right)^2}\Rightarrow\frac{a}{c}=\frac{\left(a+2016b\right)^2}{\left(b+2016c\right)^2}\)(ĐPCM)
mk nha
a: \(3x-\left|2x+1\right|=2\)
\(\Leftrightarrow\left|2x+1\right|=3x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2\right)^2-\left(2x+1\right)^2=0\\x>=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2-2x-1\right)\left(3x-2+2x+1\right)=0\\x>=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(5x-1\right)=0\\x>=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow x=3\)
e: Ta có: \(2n-3⋮n+1\)
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)