các bạn giải giùm mình với
A= 1 + 2 + 2^2 + 2^3 + ... + 2^100 khi chia cho 31 sẽ dư mấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> A = ( 1 + 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 + 29 ) + .... + ( 296 + 297 + 298 + 299 + 2100 )
=> A = 31 + 25 . ( 1 + 2 + 22 + 23 + 24 ) + .... + 296.( 1 + 2 + 22 + 23 + 24 )
=> A = 31 + 25 . 31 + .... + 296 . 31
=> A = 31 . ( 1 + 25 + 210 + .... + 296 )
Vì 31 chia hết cho 31 nên A chia cho 31 dư 0
\(A=1+\left(2+2^2+2^3+2^4+2^5\right)+....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(A=1+2.31+....+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)+1\)
Chia 31 dư 1
Số số hạng của dãy là
(100-1):1+1=100
nhóm 5 số thành 1 cặp trừ số đầu ta có ta có
100:5-1=19 (cặp)
Ta có
1+(2+\(2^2\)+\(2^3\)+\(2^4\)+ \(2^5\)) +( \(2^6\)+\(2^7\)+\(2^8\)+\(2^9\)+\(2^{10}\)) +...+(\(2^{95}\)+\(2^{96}\)+\(2^{97}\)+\(2^{98}\)+\(2^{99}\)+\(2^{100}\))
(2.(1+2+\(2^2\)+\(2^3\)+\(2^4\))+(\(2^6\).(1+2+\(2^2\)+\(2^3\)+\(2^4\))+...+(\(2^{95}\).(1+2+\(2^2\)+\(2^3\)+\(2^4\)) +1
( 2.31) +(\(2^6\).31)+...+(\(2^{95}\).31) +1
31.(2+\(2^6\)+...+\(2^{95}\)) +1
Vậy a chia cho 31 dư 1
gọi số phải tìm là aa(a>0,a<10)
a nhân 11 chia chia hết cho 2 và chia 5 dư 3
mà trong các số từ 1 đến 9 chỉ có số 8 cia 5 dư 3 chia hết cho 2
vậy 8=a,aa=88
k nha !
Gọi số tự nhiên cần tìm là aa
Theo đề bài ta có(: là chia hết nha)
aa:2
aa-3:5
Suy ra aa+2:2(vì 2:2)
aa-3+5=aa+2:5(vì 5:5)
Ta có aa+2 :2;:5
Lại có aa+2>=12
aa+2 thuộc BC(10)=20,30,40,50,60,70,80,90,100
aa thuộc tập hợp 18,28,38,48,58,68,78,88,98
tìm số nhỏ nhất chia hết cho 2, 3, 4, 5, 6, 7 rồi trừ 1 là ra.
đáp án là tự tìm, máy tính k phải để làm cảnh đâu