Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab . ac . bc = 7 . 5 .35 = 1225
=>(abc)^2 = 1225
=> abc = 35 hoặc abc = -35
Do a;b;c là các số âm nên a.b.c là số âm
=>abc=-35
Vì \(\hept{\begin{cases}\left(x+2y-4\right)^2\ge0\\\left(2x-3y-1\right)^2\ge0\end{cases}}\)=> \(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)
\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2=0\) <=> \(\left(x+2y-4\right)^2=\left(2x-3y-1\right)^2=0\)
<=>\(x+2y-4=2x-3y-1=0\)
\(x+2y-4=0\Leftrightarrow x+2y=4\Leftrightarrow2\left(x+2y\right)=8\Leftrightarrow2x+4y=8\)
\(2x-3y-1=0\Leftrightarrow2x-3y=1\)
=>\(\left(2x-3y\right)-\left(2x+4y\right)=1-8\)
=>\(2x-3y-2x-4y=-7\)
=>\(-7y=-7\)=>\(y=1\)=>\(x=2\)
Vậy .............................
=>\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
=>\(\left(x+2\right).\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)
vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\ne0\)
=>x+2=0 =>x=-2
Vậy x=-2
=>31+2+3+4+...+x=3190
=>1+2+3+4+...+x=190
=>(x+1).x:2=190
=>(x+1).x=380
mà 380 chỉ có thể ptích thành: 380=20.19
=>x+1=20 và x=19
vậy x=19
1/2[2/1.3+2/3.5+2/5.7+.........+2/x(x+2)]=16/34
2/1.3+2/3.5+2/5.7+......+2/x(x+2)=16/34:1/2=16/17
1/1-1/3+1/3-1/5+1/5-1/7+.....+1/x-1/x+2=16/17
1-1/x+2=16/17
1/x+2=1-16/17=1/17
suy ra:x+2=17
x=17-2
x=15
3x + 3x+2 = 270
3x . 1 + 3x . 32 = 270
3x . ( 1 + 32 ) = 270
3x . 10 = 270
3x = 270 : 10
3x = 27
3x = 33
=> x = 3
Có\(\frac{2^2}{1.3}.\frac{3^2}{2.4}...\frac{50^2}{49.51}=\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{50.50}{49.51}\)
= \(\frac{\left(2.3.4...50\right).\left(2.3.4...50\right)}{\left(1.2.3...49\right).\left(3.4.5...51\right)}\)
= \(\frac{50.2}{1.51}\)
= \(\frac{100}{51}\)
=2.2/1.3x3.3/2.4x..........x50.50/49.51
=2.2.3.3.4.4........50.50/1.3.2.4.3.5.......49.51
=2.50/1.51
=100/51
Số số hạng của dãy là
(100-1):1+1=100
nhóm 5 số thành 1 cặp trừ số đầu ta có ta có
100:5-1=19 (cặp)
Ta có
1+(2+\(2^2\)+\(2^3\)+\(2^4\)+ \(2^5\)) +( \(2^6\)+\(2^7\)+\(2^8\)+\(2^9\)+\(2^{10}\)) +...+(\(2^{95}\)+\(2^{96}\)+\(2^{97}\)+\(2^{98}\)+\(2^{99}\)+\(2^{100}\))
(2.(1+2+\(2^2\)+\(2^3\)+\(2^4\))+(\(2^6\).(1+2+\(2^2\)+\(2^3\)+\(2^4\))+...+(\(2^{95}\).(1+2+\(2^2\)+\(2^3\)+\(2^4\)) +1
( 2.31) +(\(2^6\).31)+...+(\(2^{95}\).31) +1
31.(2+\(2^6\)+...+\(2^{95}\)) +1
Vậy a chia cho 31 dư 1