K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

Ta có : \(a+\frac{1}{a}=b+\frac{1}{b}=c+\frac{1}{c}=x\)

=> \(\frac{a^2+1}{a}=\frac{b^2+1}{b}+\frac{c^2+1}{c}=x\)

=> \(\hept{\begin{cases}a^2+1=ax\\b^2+1=bx\\c^2+1=cx\end{cases}}\left(4\right)\Rightarrow\hept{\begin{cases}a^2-ax=-1\\b^2-bx=-1\\c^2-cx=-1\end{cases}}\)

=> a2 - ax = b2 - bx = c2 - cx

=> a2 - ax = b2 - bx

=> a2 - ax - b2 + bx = 0

=> a2 - b2 + x(b - a) = 0

=> (a - b)(b + a) + b - a = 0

=> -(b - a)(b + a) + x(b - a) = 0

=> -(b - a)(b + a - x) = 0

=> b + a - x = 0

=> b + a = x (1)

Tương tự ta có : 

b + c - x  = 0 

=> b + c = x (2)

và a + c - x =0

=> a + c = x (3)

Thay (1) (2) (3) vào (4) ta có : 

\(\hept{\begin{cases}a^2+1=a\left(a+c\right)\\b^2+1=b\left(a+b\right)\\c^2+1=c\left(b+c\right)\end{cases}\Rightarrow\hept{\begin{cases}ac=1\\ab=1\\bc=1\end{cases}}}\)=> ac - ab = 1 - 1

=> a(c - b) = 0

=> a = 0 (vì c khác b)

=> P = x.abc = 0

21 tháng 7 2020

ôi Chết ghi lộn đề bài cho tui xin lỗi \(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=x\)

3 tháng 4 2018

Cách I:(((dành cho nhũng ai biết HĐT a³ + b³ + c³ = [(a + b + c)(a² + b²+ c²-ab-bc-ca)+3abc]))) 
Ta có: 
bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³ 
=abc(1/a³ + 1/b³ + 1/c³) 
=abc[(1/a + 1/b + 1/c)(1/a² + 1/b²+ 1/c²-1/ab-1/bc-1/ca)+3/abc](áp dụng HĐt trên) 
=abc.3/(abc)=3 
Cách II: 
Từ giả thiết suy ra: 
(1/a +1/b)³=-1/c³ 
=>1/a³+1/b³+1/c³=-3.1/a.1/b(1/a+1/b)=3...
=>bc/a²+ac/b²+ ab/c²=abc/a³+abc/b³+abc/c³ 
=abc(1/a³ + 1/b³ + 1/c³) 
=abc.3/(abc)=3

Mik ko biết có đúng ko??

9 tháng 12 2015

nhật minh lm sai r

Từ : a+1b = b+1c
 a-b=1c-1b
 a-b=b−cbc (1)
Từ : b+1c=c+1a
 b-c = c+1a
 b-c = b−cac(2)
Từ : c+1a=a+1b
 c-a =1b-1a
 c-a=a−bab(3)
Nhân tùng vế của (1)(2)(3) cho nhau ,ta đc:
(a-b)(b-c)(c-a) = (a−b)(b−c)(c−a)a2b2c2
 a^2b^2c^2(a-b)(b-c)(c-a)=(a-b)(b-c)(c-a)
 (a-b)(b-c)(a^2b^2c^2 -a)=0
Vì a,b,c đôi một khác nhau 
 ( a-b)(b-c)(c-a)khác 0
 a^2b^2c^2 -1 =0
 abc= 1 or abc=-1

9 tháng 12 2015

Giả  sử abc =1 ta có

\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\Leftrightarrow a+ac=b+bc=c+bc\)

=>a(1+c)=b(1+c)=c(1+b)

=>a =b=c vô lí vì a;b;c đôi 1 khác nhau

=> Không có a,b,c nào thỏa mãn ,

1 tháng 6 2015

a #  b # c # a,thoan man a/(b-c)+b/(c-a)+c/(a-b)=0

<=> a(c-a)(a-b)+b(a-b)(b-c)+c(b-c)(c-a)=0

<=>-a(a-n)(a-c)-b(b-a)(b-c)+c(c-a)(c-b)(c-b)=0

<=>a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)=0               (*)

Tu (*)ta thay a,b,c doi xung nen ko giam tinh tong quat gia su :a>b>c

Nếu a,b,c đều ko âm ,giả thiết trên thành a>b>c>hoặc=0

(*)<=>(a-b)(a^2 - ac - b^2 +bc)+c(c-a)(c-b)=0

<=>(a-b)[(a+b)(a-b)- c(a-b)]+c(c -a)(c-b)=0

<=>(a-b)^2.(a+b-c)+c(a-c)(b-c)=0        (**)

Thấy b- c > 0 (do b > c)và a > 0 =>a+b-c > 0 =>(a-b)^2 . (a+b-c)>0 va c(a-c)(b-c)>hoac = 0

=>(a-b)^2.(a+b-c)+c(a-c)(b-c)>0 mâu thuẫn với (**)

Vay c < 0 (noi chung la trong a,b,c phai co so am )

Nếu cả a,b,c đều không có số dương do giả thiết trên ta có :0 > hoac = a > hoac = b>hoac = c

(*)<=>a(a-b)(a-c)+(b-c)(b^2-ab-c^2 + ca)=0

<=>a(a-b)(a-c)+(b-c)[(b+c)(b-c)-a(b-c)]=0

<=>a(a-b)(a-c)+(b-c)^2.(b+c-a)=0             (***)

a-b > 0 ;a- c > 0 => a(a-b)(a-c)< hoac = 0 (vi a < hoac = 0)

Và b<0 ; c -a < 0 => b+ c -a < 0=>(b-c)^2.(b+c-a)<0

=> a(a-b)(a-c)+(b-c)^2.(b+c-a)<0  mâu thuẫn với  (***)

Chứng tỏ trong a,b,c phải có số dương 

Tóm lại trong 3 số a,b,c phải có  số dương và âm .

29 tháng 11 2015

Chờ ngày này 3 năm sau tớ giải cho

27 tháng 4 2016

Ta có:

\(a+\frac{1}{b}=b+\frac{1}{c}\Rightarrow a-b=\frac{b-c}{bc}\)

làm tương tự với các đẳng thức còn lại rồi nhân với nhau ta có đpcm.

30 tháng 11 2016

Bài này mà không làm đc đốt sách đê 

30 tháng 11 2016

ê cu vô cái link này nè http://olm.vn/hoi-dap/question/94896.html tui vừa chép xong 

ooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs