Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
Ta có
\(1S=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-A\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Xét tử ta có Tử = ba2 - ab2 + cb2 - bc2 + ac2 - ca2
= (ba2 - bc2) + (ac2 - ca2) + (- ab2 + cb2)
= (a - c)(ab + bc - ac - b2)
= (a - c)(b - c)(a - b)
Từ đó => S = - 1
Ta có: \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)
\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2-2\left(\frac{1}{\left(a-b\right)\left(b-c\right)}+\frac{1}{\left(b-c\right)\left(c-a\right)}+\frac{1}{\left(c-a\right)\left(a-b\right)}\right)\)
\(=\left(\frac{1}{\left(a-b\right)}+\frac{1}{\left(b-c\right)}+\frac{1}{c-a}\right)^2-2\left(\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)
\(=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)
=> \(A=\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}=\sqrt{\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2}\)
\(=\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)
Vì a,b,c là các số hữu tỉ => \(\left|\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right|\)là một số hữu tỉ
=> A là một số hữu tỉ
do bài này quá nhiều người đã đăng rồi nên mình sẽ gửi link qua phần tin nhắn cho bạn nhé
Ta có : \(a+\frac{1}{a}=b+\frac{1}{b}=c+\frac{1}{c}=x\)
=> \(\frac{a^2+1}{a}=\frac{b^2+1}{b}+\frac{c^2+1}{c}=x\)
=> \(\hept{\begin{cases}a^2+1=ax\\b^2+1=bx\\c^2+1=cx\end{cases}}\left(4\right)\Rightarrow\hept{\begin{cases}a^2-ax=-1\\b^2-bx=-1\\c^2-cx=-1\end{cases}}\)
=> a2 - ax = b2 - bx = c2 - cx
=> a2 - ax = b2 - bx
=> a2 - ax - b2 + bx = 0
=> a2 - b2 + x(b - a) = 0
=> (a - b)(b + a) + b - a = 0
=> -(b - a)(b + a) + x(b - a) = 0
=> -(b - a)(b + a - x) = 0
=> b + a - x = 0
=> b + a = x (1)
Tương tự ta có :
b + c - x = 0
=> b + c = x (2)
và a + c - x =0
=> a + c = x (3)
Thay (1) (2) (3) vào (4) ta có :
\(\hept{\begin{cases}a^2+1=a\left(a+c\right)\\b^2+1=b\left(a+b\right)\\c^2+1=c\left(b+c\right)\end{cases}\Rightarrow\hept{\begin{cases}ac=1\\ab=1\\bc=1\end{cases}}}\)=> ac - ab = 1 - 1
=> a(c - b) = 0
=> a = 0 (vì c khác b)
=> P = x.abc = 0
ôi Chết ghi lộn đề bài cho tui xin lỗi \(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=x\)