K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:
Áp dụng BĐT AM-GM:

$ab^2-a^2b=ab(b-a)\leq a(1-a)\leq (\frac{a+1-a}{2})^2=(\frac{1}{2})^2=\frac{1}{4}$

Ta có đpcm

Giá trị này đạt tại $b=1; a=\frac{1}{2}$

6 tháng 1 2016

Bạn bảo bọn mình cm thế nào? Bạn phải đưa ra đẳng thức hoặc bất đẳng thức chứ!

 

23 tháng 8 2016

giup My vs

\(\frac{a}{b}< \frac{c}{d}\) => ad < bc

=> ad + ab < bc + ab

=> a(b + d) < b(a + c)

=> \(\frac{a}{b}< \frac{a+c}{b+d}\)

=> ad < bc

=> ad + cd< bc + cd

=> d(a + c) < c(b + d)

=> \(\frac{a+c}{b+d}< \frac{c}{d}\)

=> đccm

b) \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48}\)\(\frac{-14}{48};\frac{-13}{48}\)\(< \frac{-12}{48}=\frac{-1}{4}\)

ok mk nhé!!! 4556577568797902451353466545475678769863513532345634645645745

8 tháng 5 2015

a + b2 + c2 < 2

<=> a + b2 + c2 <  a+ b + c

<=> (a - a )+ (b2 - b )+ (c2 - c) < 0

<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0   (*)

Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1  vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0

tương tự b(b - 1) < 0; c(c -1) < 0

Vậy (*) => đpcm