Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 0<=a<=b<=c<=1 nên (a-1) (b-1)>=0 khi và chỉ khi ab+1>=a+b
khi và chỉ khi 1/ab+1<=1/a+b
khi và chỉ khi c/ab+1<=c/a+b
CMTT: a/bc+1<=a/b+c và b/ac+1<=b/a+c
Do đó a/bc+1+b/ac+1+c/ab+1<=(a/b+c)+(b/a+c)+(c/a+b)
=(2a/a+b+c)+(2b/a+b+c)+(2c/a+b+c)=2(a+b+c)/a+b+c=2
Suy ra : ĐPCM
K CHO MINH NHA !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{a}{b}< \frac{c}{d}\) => ad < bc
=> ad + ab < bc + ab
=> a(b + d) < b(a + c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> ad < bc
=> ad + cd< bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> đccm
b) \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48}\); \(\frac{-14}{48};\frac{-13}{48}\)\(< \frac{-12}{48}=\frac{-1}{4}\)
ok mk nhé!!! 4556577568797902451353466545475678769863513532345634645645745
Cho a,b,c là ba số dương thoả mãn \(0\le a\le b\le c\le1\)
Chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Giải :
Từ giả thiết ta có : \(\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(b+c\right)+bc\ge0\Rightarrow bc+1\ge b+c\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta cũng có : \(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\) ; \(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng (1) , (2) , (3) theo vế ta được : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
ta có : a<= 1 => a-1<=0
b<=1 => b-1<=0
=> (b-1)(a-1) >= 0 => ab-a-b+1 >=0 => ab+1>=a+b => 2ab+1>= a+b ( vì ab>=0)
=> 2ab+1+1>= a+b+c ( vì 1>= c)
2ab+2>=a+b+c => 1/2ab+2<=1/a+b+c c/ab+1<= 2c/a+b+c
chứng minh tương tự ta có b/ac+1 <= 2b/a+b+c ; a/bc+1<= 2a/a+b+c
=> a/bc+1+b/ac+1 + c/ab+c <= 2a+2b+2c / a+b+c = 2 ( đpcm )
Do \(a,b,c\) nguyên dương nên \(\left(a,b,c\right)=\left(0;0;0\right),\left(0;0;1\right);\left(0;1;1\right);\left(1;1;1\right)\)
Thử vào biểu thức bên trái đều thấy nó có giá trị nhỏ hơn hoặc bằng 2.
Bạn bảo bọn mình cm thế nào? Bạn phải đưa ra đẳng thức hoặc bất đẳng thức chứ!