K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC vuông tại A có HB là hình chiếu của AB trên BC(AH là đường cao ứng với cạnh BC)

nên \(AB^2=HB\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Xét ΔABC vuông tại A có HC là hình chiếu của AC trên BC(AH là đường cao ứng với cạnh BC)

nên \(AC^2=HC\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Ta có: \(\frac{AB^2}{AC^2}=\frac{HB\cdot BC}{HC\cdot BC}=\frac{HB}{HC}\)(đpcm)

b) Xét ΔAHB vuông tại H có BE là hình chiếu của HB trên AB(HE là đường cao ứng với cạnh AB)

nên \(HB^2=BE\cdot AB\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Xét ΔAHC vuông tại H có CF là hình chiếu của CH trên AC(HF là đường cao ứng với cạnh AC)

nên \(HC^2=CF\cdot AC\)(định lí 1 về hệ thức lượng trong tam giác vuông)

Ta có: \(\frac{HB}{HC}=\frac{AB^2}{AC^2}\)

\(\Leftrightarrow\left(\frac{HB}{HC}\right)^2=\left(\frac{AB^2}{AC^2}\right)^2=\frac{AB^4}{AC^4}\)

hay \(\frac{HB^2}{HC^2}=\frac{AB^4}{AC^4}\)

\(\frac{HB^2}{HC^2}=\frac{BE\cdot AB}{CF\cdot AC}\)

nên \(\frac{AB^4}{AC^4}=\frac{BE\cdot AB}{CF\cdot AC}\)

\(\Leftrightarrow\frac{AB^4}{AC^4}=\frac{BE}{CF}\cdot\frac{AB}{AC}\)

hay \(\frac{BE}{CF}=\frac{AB^4}{AC^4}:\frac{AB}{AC}=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}=\frac{AB^3}{AC^3}\)(đpcm)

3 tháng 7 2021

a) Ta có: \(\dfrac{HB}{HC}=\dfrac{HB.HC}{HC^2}=\dfrac{HA^2}{HC^2}=\left(\dfrac{HA}{HC}\right)^2\)

Xét \(\Delta AHC\) và \(\Delta BAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AHC=\angle BAC=90\\\angle ACBchung\end{matrix}\right.\)

\(\Rightarrow\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\dfrac{HA}{HC}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{c^2}{b^2}\)

b) tham khảo ở đây:https://hoc24.vn/cau-hoi/cho-dabc-vuong-tai-a-duong-cao-ah-goi-e-f-lan-luot-la-cac-hinh-chieu-cua-h-tren-ab-va-ac-cmra-aeabaf.1150118751274

3 tháng 7 2021

a) Áp dụng hệ thức lượng trong tam giác vuông có:

\(AB^2=BH.BC\)

\(AC^2=CH.CB\)

\(\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{c^2}{b^2}\)

b) Áp dụng hệ thức lượng trong tam giác vuông có:

\(BH^2=BE.BA\)

\(CH^2=CF.CA\)

\(\Rightarrow\dfrac{BH^2}{CH^2}=\dfrac{BE}{CF}.\dfrac{BA}{CA}\)\(\Leftrightarrow\dfrac{c^4}{b^4}=\dfrac{BE}{CF}.\dfrac{c}{b}\)

\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{c^3}{b^3}\)

26 tháng 6 2018

b) Tứ giác ADHE là hình chữ nhật (tự chứng minh nhé)

⇒DE=AH⇒DE3=AH3
AH5=AH4.AH=BH2.CH2.AH=BD.BA.CE.CA.AH=BD.CE.AH.BC.AH=BD.CE.BC.AH2

⇒AH3=BD.CE.BC⇔DE3=BD.CE.BC(dpcm)

e: BE*BC^2

=BH^2/BA*BC^2

=(BH*BC)^2/BA

=BA^4/BA=BA^3