(d)y=mx+2 (P)y=x2 :2
Gọi giao điểm (d) với Oy là G. Gọi H, K là hình chiếu của A, B trên Ox tìm m để Sghk=4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình hoành độ giao điểm của (d) và (P) là \(x^2=mx+1\Leftrightarrow x^2-mx-1=0\). (*)
Do ac < 0 nên phương trình luôn có 2 nghiệm phân biệt.
Do đó (d) cắt (P) tại 2 điểm phân biệt.
b) Do I có hoành độ là 0 nên có tung độ là 1. Do đó \(I\left(0;1\right)\).
Dễ thấy \(OI\perp HK\) và OI = 1.
Gọi \(x_1,x_2\) lần lượt là hoành độ của H và K.
Khi đó \(x_1,x_2\) là nghiệm của phương trình (*).
Theo hệ thức Viét ta có \(x_1x_2=-1\).
Ta có \(OK.OH=\left|x_1\right|.\left|x_2\right|=\left|x_1x_2\right|=1=OI^2\) nên tam giác IKH vuông tại I. (đpcm)
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\mx-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{m}\\y=0\end{matrix}\right.\)
=>B(3/m;0)
\(OB=\sqrt{\left(\dfrac{3}{m}-0\right)^2+\left(0-0\right)^2}=\sqrt{\dfrac{9}{m^2}}=\dfrac{3}{\left|m\right|}\)
\(OA=\sqrt{\left(0-0\right)^2+\left(-3-0\right)^2}=3\)
OA=2OB
=>\(3=\dfrac{6}{\left|m\right|}\)
=>|m|=6/3=2
=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)
a: PTHĐGĐ là:
x^2-(2m+1)x+2m-4=0
Δ=(2m+1)^2-4(2m-4)
=4m^2+4m+1-8m+16
=4m^2-4m+17=(2m-1)^2+16>=16>0 với mọi m
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: x1+x2=2m+1;x1x2=2m-4
HK=4
=>|x1-x2|=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\)
=>\(\sqrt{4m^2+4m+1-8m+16}=4\)
=>4m^2-4m+17=16
=>m=1/2
Hoành độ giao điểm của (d) và (P) là nghiệm phương trình:
\(\frac{1}{2}x^2=mx+2\)
<=> \(\frac{1}{2}x^2-mx-2=0\)
<=> \(x^2-2mx-4=0\)(1)
có: \(\frac{c}{a}=-4< 0\)=> phương trình có 2 nghiệm trái dấu
=> Giao điểm A và B của d và (P) là 2 điểm nằm ở 2 phía của trục tung
Gọi a; b lần lượt là hoành độ của A và B => a; b là 2 nghiệm của phương trình (1)
=> H( a; 0) ; K ( b; 0) => HK = OH + OK = |a| + |b|
Ta có G là giao điểm của Oy và (d) => G( 0: 2 ) => GO = 2
S (GHK) = \(\frac{1}{2}GO.HK=\left|a\right|+\left|b\right|\)
Theo bài ra ta có: \(\left|a\right|+\left|b\right|=4\)
<=> \(\left(\left|a\right|+\left|b\right|\right)^2=16\)
<=> \(\left(a+b\right)^2-2ab+2\left|ab\right|=16\)
<=> \(\left(a+b\right)^2-4ab=16\)
<=> (2m)^2 +4.4 = 16
<=> m = 0
vậy ...