K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

\(\frac{2x}{x-2}-\frac{3x+10}{x^2-4}=\frac{x}{x+2}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{2x}{x-2}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x+2}=0\)

\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x^2+4x}{\left(x-2\right)\left(x+2\right)}-\frac{3x+10}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{2x^2+4x-3x-10-x^2+2x}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2+3x-10}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2+5x-2x-10}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{\left(x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

=> x+5=0

<=> x=-5(tmđk)

Vậy x=-5 là nghiệm của phương trình

29 tháng 6 2020

\(\frac{2x}{x-2}-\frac{3x+10}{x^2-4}=\frac{x}{x+2}\) ( đkxđ : \(x\ne\pm2\))

\(\Leftrightarrow\frac{2x}{x-2}-\frac{3x+10}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{3x+10}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow2x^2+4x-3x-10=x^2-2x\)

\(\Leftrightarrow2x^2+4x-3x-10-x^2+2x=0\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)

\(x\ne\pm2\)=> x = -5

20 tháng 1 2020

a) \(\left(x^2+2x+2\right)=\left(x+1\right)^2+1>0;\left(x^2+x+2\right)=\left(x+\frac{1}{2}^2\right)+\frac{3}{4}>0\)

Đặt \(y=\frac{x^2+2x+2}{x^2+x+2}=1+\frac{x}{x^2+x+1}\Rightarrow\frac{2x}{x^2+x+2}=2\left(y-1\right)\)

\(\Rightarrow\frac{1}{y}=\frac{x^2+x+2}{x^2+2x+2}=1-\frac{x}{x^2+2x+2}\Rightarrow\frac{x}{x^2+2x+2}=1-\frac{1}{y}\)

Thay vào ta có PT theo ẩn \(y:\) \(\left(1-\frac{1}{y}\right)+2\left(y-1\right)=\frac{7}{10}\)

\(\Leftrightarrow20y^2-17y-10=0\)

\(\Leftrightarrow\left(5y+2\right)\left(4y-5\right)=0\)

\(\Leftrightarrow4y-5=0\left(Vì:y>0\right)\)

\(\Leftrightarrow\frac{x^2+2x+2}{x^2+x+2}=\frac{5}{4}\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow x=1;x=2\)

Vậy ...................................

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x 

13 tháng 2 2020

Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((

14 tháng 2 2020

\(1,3x-5x+5=-8\)

\(\Leftrightarrow-2x+5+8=0\)

\(\Leftrightarrow-2x=-13\)

\(\Leftrightarrow x=\frac{13}{2}\)

28 tháng 2 2018

a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)

Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:

\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)

\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)

\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)

\(\Leftrightarrow2t^2+t-1=6t^2-6t\)

\(\Leftrightarrow-4t^2+7t-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)

Vậy phương trình vô nghiệm.

10 tháng 11 2019

a/ Đơn giản, phân tích mẫu số thứ 3 thành nhân tử rồi quy đồng, ko có gì khó cả, chắc bạn tự làm được

b/ Đặt \(\left(x+1\right)^2=t\ge0\)

\(\frac{t+6}{t+2}=t+3\Leftrightarrow t+6=\left(t+2\right)\left(t+3\right)\)

\(\Leftrightarrow t^2+4t=0\Rightarrow\orbr{\begin{cases}t=0\\t=-4\left(l\right)\end{cases}}\) \(\Rightarrow x=-1\)

c/ ĐKXĐ: bla bla bla...

Nhận thây \(x=0\) không phải nghiệm, phương trình tương đương:

\(\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(3x+\frac{2}{x}-1=t\)

\(\frac{2}{t}-\frac{7}{t+6}=1\)

\(\Leftrightarrow2\left(t+6\right)-7t=t\left(t+6\right)\)

\(\Leftrightarrow t^2+11t-12=0\Rightarrow\orbr{\begin{cases}t=1\\t=-12\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x+\frac{2}{x}-1=1\\3x+\frac{2}{x}-1=-12\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x^2-2x+2=0\\3x^2+11x+2=0\end{cases}}\)

Bấm máy