K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 6 2020

\(\frac{c+1}{c+3}\ge\frac{1}{a+2}+\frac{3}{b+4}\ge2\sqrt[]{\frac{3}{\left(a+2\right)\left(b+4\right)}}\) (1)

\(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+3-2}{c+3}=1-\frac{2}{c+3}\Rightarrow1-\frac{1}{a+2}\ge\frac{3}{b+4}+\frac{2}{c+3}\)

\(\Rightarrow\frac{a+1}{a+2}\ge\frac{3}{b+4}+\frac{2}{c+3}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\) (2)

\(\frac{1}{a+2}+\frac{3}{b+4}\le1-\frac{2}{c+3}\Rightarrow1-\frac{3}{b+4}\ge\frac{1}{a+2}+\frac{2}{c+3}\)

\(\Rightarrow\frac{b+1}{b+4}\ge\frac{1}{a+2}+\frac{2}{c+3}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\) (3)

Nhân vế với vế (1);(2);(3):

\(\frac{\left(a+1\right)\left(b+1\right)\left(c+1\right)}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\ge8\sqrt{\frac{36}{\left(a+2\right)^2\left(b+4\right)^2\left(c+3\right)^2}}=\frac{48}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\)

\(\Rightarrow Q\ge48\Rightarrow Q_{min}=48\) khi \(\left(a;b;c\right)=\left(1;5;3\right)\)

13 tháng 8 2020

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)

19 tháng 11 2019

Áp dụng BĐT AM - GM:

\(\frac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\) \(\Rightarrow abc\le\frac{1}{8}\)

\(1+1+1+\frac{1}{2a}+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge7\sqrt[7]{\frac{1}{16a^2b^2}}\)

\(\Leftrightarrow3+\frac{1}{a}+\frac{1}{b}\ge7\sqrt[7]{\frac{1}{16a^2b^2}}\)

Tương tự ta CM được:

\(3+\frac{1}{b}+\frac{1}{c}\ge7\sqrt[7]{\frac{1}{16b^2c^2}}\)

\(3+\frac{1}{c}+\frac{1}{a}\ge\ge7\sqrt[7]{\frac{1}{16c^2a^2}}\)

Nhân vế theo vế 3 bất đẳng thức trên:

\(S\ge343\sqrt[7]{\frac{1}{4096a^4b^4c^4}}\ge343\sqrt[7]{\frac{1}{4096.\frac{1}{8^4}}}=343\)

\(\Rightarrow Min_S=343\Leftrightarrow a=b=c=\frac{1}{2}\)

19 tháng 11 2019

@Nguyễn Việt Lâm

9 tháng 11 2017

a2(b+c)2+5bc+b2(a+c)2+5ac4a29(b+c)2+4b29(a+c)2=49(a2(1a)2+b2(1b)2)(vì a+b+c=1)
a2(1a)29a24=(2x)(3x1)24(1a)20(vì )<a<1)
a2(1a)29a24
tương tự: b2(1b)29b24
P49(9a24+9b24)3(a+b)24=(a+b)943(a+b)24.
đặt t=a+b(0<t<1)PF(t)=3t24+t94()
Xét hàm () được: MinF(t)=F(23)=19
MinP=MinF(t)=19.dấu "=" xảy ra khi a=b=c=13

9 tháng 5 2017

để biểu thức cho đơn giản , ta đặt x=a+1,y=b+1,z=c+1(x,y,z>0)

thì giả thiết thành \(\frac{1}{x+1}+\frac{3}{y+3}\le\frac{z}{z+2}\) .Tìm min xyz 

Áp dụng bất đẳng thức cauchy:\(\frac{z}{z+2}\ge\frac{1}{x+1}+\frac{3}{y+3}\ge2\sqrt{\frac{3}{\left(x+1\right)\left(y+3\right)}}\)(1)

từ giả thiết :\(\frac{1}{x+1}\le\frac{z}{z+2}-\frac{3}{y+3}\Leftrightarrow1-\frac{1}{x+1}\ge1-\frac{z}{z+2}+\frac{3}{y+3}\)

\(\Leftrightarrow\frac{x}{x+1}\ge\frac{2}{z+2}+\frac{3}{y+3}\)

Áp dụng bất đẳng thức cauchy 1 lần nữa: \(\frac{x}{x+1}\ge\frac{2}{z+2}+\frac{3}{y+3}\ge2\sqrt{\frac{6}{\left(z+2\right)\left(y+3\right)}}\)(2)

tương tự ta cũng có: \(\frac{y}{y+3}\ge2\sqrt{\frac{2}{\left(z+2\right)\left(x+1\right)}}\)(3),

cả 2 vế các bất đẳng thức (1),(2)và (3) đều dương, nhân vế với vế: 

\(\frac{xyz}{\left(x+1\right)\left(y+3\right)\left(z+2\right)}\ge\frac{8.6}{\left(x+1\right)\left(z+2\right)\left(y+3\right)}\)

\(\Leftrightarrow xyz\ge48\)

Dấu = xảy ra khi x=2,y=6,z=4 hay a=1,b=5,z=3

30 tháng 1 2017

\(GT\Rightarrow\)\(\frac{1}{a+2}+\frac{3}{b+4}\leq1-\frac{2}{c+3}\)

Áp dụng BĐT AM-GM ta có:

\(1-\frac{2}{c+3}\geq\frac{1}{a+2}+\frac{3}{b+4}\geq2\sqrt{\frac{3}{(a+2)(b+4)}}\)

Tương tự ta có:

\(1-\frac{1}{a+2}\geq\frac{3}{b+4}+\frac{2}{c+3}\geq2\sqrt{\frac{6}{(c+3)(b+4)}}\)

\(1-\frac{3}{b+4}\geq\frac{1}{a+2}+\frac{2}{c+3}\geq2\sqrt{\frac{6}{(c+3)(a+2)}}\)

Nhân theo vế ta được: \((1-\frac{2}{c+3})(1-\frac{1}{a+2})(1-\frac{3}{b+4})\geq \frac{48}{(a+2)(b+4)(c+3)}\)

\(\Leftrightarrow (\frac{c+1}{c+3})(\frac{a+1}{a+2})(\frac{b+1}{b+4})\geq\frac{48}{(a+2)(b+4)(c+3)}\)

\(\Leftrightarrow(a+1)(b+1)(c+1)\geq48\)

Dấu "=" xảy ra khi \(a=1;c=3;b=5\)

30 tháng 1 2017

\(Gt\Leftrightarrow 1-\frac{1}{a+2}+1-\frac{3}{b+4}+\frac{c+1}{c+3}\geq 2\\\Leftrightarrow \frac{a+1}{a+2}+\frac{b+1}{b+4}+\frac{c+1}{c+3}\geq 2\)

Đặt \((a+1;b+1;c+1)\rightarrow (x;y;z)\), vậy cần tìm GTNN của \(Q=xyz\)

Ta có: \(\frac{x}{x+1}+\frac{y}{y+3}+\frac{z}{z+2}\geq 2\)

Áp dụng BĐT AM-GM ta có:

\(\frac{x}{x+1}\geq 1-\frac{y}{y+3}+1-\frac{z}{z+2}=\frac{3}{y+3}+\frac{2}{z+2}\geq 2\sqrt{\frac{6}{(y+3)(z+2)}}\)

\(\frac{y}{y+3}\geq 1-\frac{x}{x+1}+1-\frac{z}{z+2}=\frac{1}{x+1}+\frac{2}{z+2}\geq 2\sqrt{\frac{2}{(x+1)(z+2)}}\)

\(\frac{z}{z+2}\geq 1-\frac{x}{x+1}+1-\frac{y}{y+3}= \frac{1}{x+1}+\frac{3}{y+3}\geq 2\sqrt{\frac{3}{(x+1)(y+3)}}\)

Nhân theo vế ta có:\(\frac{xyz}{\left(x+1\right)\left(y+3\right)\left(z+2\right)}\ge\frac{48}{\left(x+1\right)\left(y+3\right)\left(z+2\right)}\Leftrightarrow Q\ge48\)

Dấu "=" xảy ra khi \(\Leftrightarrow \left\{\begin{matrix} \frac{1}{x+1}=\frac{3}{y+3}=\frac{2}{z+2} & & \\ \frac{1}{a+2}+\frac{3}{b+4}=\frac{c+1}{c+3} & & \end{matrix}\right.\)\(\Leftrightarrow a=1;b=5;c=3\)

25 tháng 12 2019

We have:

\(M=1-\frac{1}{3}\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\)

Consider:

\(\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\ge\frac{3}{2}\)

\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\)

Prove:

\(\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\ge\frac{3}{2}\)

\(\Leftrightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge2\left(a^2+b^2+c^2\right)+27\)

Consider:

\(\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+\Sigma_{cyc}ab\)

\(\Rightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab\)

Now we need to prove:

\(4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab=2\Sigma_{cyc}a^2+27\)

\(\Leftrightarrow2\left(a+b+c\right)^2=27\) (not fail)

\(\Rightarrow M\le\frac{1}{2}\)

Sign '=' happen when \(a=b=c=\sqrt{\frac{3}{2}}\)

16 tháng 10 2016

Áp dụng Bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có:

\(P\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

Lại có:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\)

\(\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=9\)

Mặt khác \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

\(\Rightarrow\frac{1}{ab+bc+ca}\ge3\)\(\Rightarrow P_{Min}=30\)

Dấu = khi \(a=b=c=\frac{1}{3}\)