K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

Câu d, là câu riêng luôn rồi nhé 

Đặt các cạnh hình vuông là a, BM= BE= x 

\(\Rightarrow S_{MBE}=\frac{x^2}{2}\)

\(S_{AMD}=S_{CED}=\frac{a\left(a-x\right)}{2}\)

Ta có: \(S_{DEN}=a^2-\left(a\left(a-x\right)+\frac{x^2}{2}\right)\)

\(=\frac{2a^2-2a^2+2ax-x^2}{2}\)

\(=\frac{a^2-\left(a^2-2ax+x^2\right)}{2}\)

\(=\frac{a^2}{2}-\frac{\left(a-x\right)^2}{2}\le\frac{a^2}{2}\)

Dấu "=" xảy ra khi: a=x <=> BC=BE <=> E trùng C 

Quá trình mình làm chỉ tắt những ý chính, bạn làm bài cần làm đầy đủ hơn!!! 

1: Xét ΔCIN vuông tại I và ΔCBM vuông tại B có 

\(\widehat{ICN}\) chung

Do đó: ΔCIN\(\sim\)ΔCBM

Suy ra: CI/CB=CN/CM

hay \(CI\cdot CM=CB\cdot CN\)

2: Xét ΔNCD vuông tại C có CI là đường cao

nên \(IC^2=IN\cdot ID\)

26 tháng 4 2021

a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:

\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).

\(\widehat{BCA}\)chung.

\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).

26 tháng 4 2021

b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:

\(\widehat{KBC}\)chung.

\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).

\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).

\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).

\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).

5 tháng 5 2018

1 tháng 12 2018

a: Xét ΔCDH vuông tại D và ΔCBA vuông tại B có

góc BCA chung
Do đó: ΔCDH\(\sim\)ΔCAB

b: Xét ΔABC vuông tại B và ΔADE vuông tại D có

góc DAE chung

Do đo: ΔABC\(\sim\)ΔADE

Suy ra: AB/AD=AC/AE
hay \(AB\cdot AE=AD\cdot AC\)

c: Xét ΔCFA vuông tại F và ΔCDE vuông tại D có

góc DCE chung

Do đo: ΔCFA\(\sim\)ΔCDE

Suy ra: CF/CD=CA/CE
hay CF/CA=CD/CE

Xét ΔCFD và ΔCAE có

CF/CA=CD/CE
góc FCD chung

Do đó: ΔCFD\(\sim\)ΔCAE

21 tháng 5 2019

A B C D E I F 1 1 K H

a) Vì tứ giác ABCD là hình vuông

=> \(\widehat{B}=\widehat{C}=\widehat{A}=\widehat{D}\) \(=90^0\)

Xét ΔCIF và ΔCBE có:

\(\widehat{B}=\widehat{FIC}\) \(=90^0\)

\(\widehat{C1}\) : chung

=> ΔCIF∼ΔCBE (g.g)

b) Xét ΔDIC và ΔDCF có:

\(\widehat{C}=\widehat{DIC}\) \(=90^0\)

\(\widehat{D1}\) : chung

=> ΔDIC∼ΔDCF (g.g)

=> \(\widehat{DFC}=\widehat{DCI}\) hay \(\widehat{IFC}=\widehat{DIC}\)

Xét ΔIDC và ΔICF có:

\(\widehat{DIC}=\widehat{FIC}\) \(=90^0\)

\(\widehat{IFC}=\widehat{DCI}\) (cmtrn)

=> ΔIDC∼ΔICF (g.g)

\(\Rightarrow\frac{ID}{IC}=\frac{IC}{IF}\Leftrightarrow ID.IF=IC^2\) (đpcm)

c)

22 tháng 10 2019

Thanks!