Cho hình vuông ABCD lấy điểm E là TD của AB, qua D kẻ đường vuông góc với CE tại I cắt BC tại F
1, Cm \(\Delta CIF\) đồng dạng \(\Delta CBE\)
2, Cm IC2 = IF.ID
3, Cm \(\Delta ADI\)cân
4, Gọi K là TĐ của DC, AK cắt DF tại H tính \(^SKHCI\)biết AB=6cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu d, là câu riêng luôn rồi nhé
Đặt các cạnh hình vuông là a, BM= BE= x
\(\Rightarrow S_{MBE}=\frac{x^2}{2}\)
\(S_{AMD}=S_{CED}=\frac{a\left(a-x\right)}{2}\)
Ta có: \(S_{DEN}=a^2-\left(a\left(a-x\right)+\frac{x^2}{2}\right)\)
\(=\frac{2a^2-2a^2+2ax-x^2}{2}\)
\(=\frac{a^2-\left(a^2-2ax+x^2\right)}{2}\)
\(=\frac{a^2}{2}-\frac{\left(a-x\right)^2}{2}\le\frac{a^2}{2}\)
Dấu "=" xảy ra khi: a=x <=> BC=BE <=> E trùng C
Quá trình mình làm chỉ tắt những ý chính, bạn làm bài cần làm đầy đủ hơn!!!
1: Xét ΔCIN vuông tại I và ΔCBM vuông tại B có
\(\widehat{ICN}\) chung
Do đó: ΔCIN\(\sim\)ΔCBM
Suy ra: CI/CB=CN/CM
hay \(CI\cdot CM=CB\cdot CN\)
2: Xét ΔNCD vuông tại C có CI là đường cao
nên \(IC^2=IN\cdot ID\)
a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:
\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).
\(\widehat{BCA}\)chung.
\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).
b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:
\(\widehat{KBC}\)chung.
\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).
\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).
\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).
\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).
a: Xét ΔCDH vuông tại D và ΔCBA vuông tại B có
góc BCA chung
Do đó: ΔCDH\(\sim\)ΔCAB
b: Xét ΔABC vuông tại B và ΔADE vuông tại D có
góc DAE chung
Do đo: ΔABC\(\sim\)ΔADE
Suy ra: AB/AD=AC/AE
hay \(AB\cdot AE=AD\cdot AC\)
c: Xét ΔCFA vuông tại F và ΔCDE vuông tại D có
góc DCE chung
Do đo: ΔCFA\(\sim\)ΔCDE
Suy ra: CF/CD=CA/CE
hay CF/CA=CD/CE
Xét ΔCFD và ΔCAE có
CF/CA=CD/CE
góc FCD chung
Do đó: ΔCFD\(\sim\)ΔCAE
a) Vì tứ giác ABCD là hình vuông
=> \(\widehat{B}=\widehat{C}=\widehat{A}=\widehat{D}\) \(=90^0\)
Xét ΔCIF và ΔCBE có:
\(\widehat{B}=\widehat{FIC}\) \(=90^0\)
\(\widehat{C1}\) : chung
=> ΔCIF∼ΔCBE (g.g)
b) Xét ΔDIC và ΔDCF có:
\(\widehat{C}=\widehat{DIC}\) \(=90^0\)
\(\widehat{D1}\) : chung
=> ΔDIC∼ΔDCF (g.g)
=> \(\widehat{DFC}=\widehat{DCI}\) hay \(\widehat{IFC}=\widehat{DIC}\)
Xét ΔIDC và ΔICF có:
\(\widehat{DIC}=\widehat{FIC}\) \(=90^0\)
\(\widehat{IFC}=\widehat{DCI}\) (cmtrn)
=> ΔIDC∼ΔICF (g.g)
\(\Rightarrow\frac{ID}{IC}=\frac{IC}{IF}\Leftrightarrow ID.IF=IC^2\) (đpcm)
c)