Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giảng học thử
Video không hỗ trỡ trên thiết bị của bạn!
Bài 9: Hình chữ nhật - Phần 1 - Toán 8 - Cô Diệu Linh
Video không hỗ trỡ trên thiết bị của bạn!
Bài 1. Định lí Ta-lét trong tam giác - Phần 1 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Đường trung bình của tam giác, của hình thang - Phần 2 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 3. Hình thang cân - Phần 3 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Khái niệm hai tam giác đồng dạng - Phần 2 - Toán 8 - Thầy Phan Toàn
Bài giảng học thử
Video không hỗ trỡ trên thiết bị của bạn!
Bài 9: Hình chữ nhật - Phần 1 - Toán 8 - Cô Diệu Linh
Video không hỗ trỡ trên thiết bị của bạn!
Bài 1. Định lí Ta-lét trong tam giác - Phần 1 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Đường trung bình của tam giác, của hình thang - Phần 2 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 3. Hình thang cân - Phần 3 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Khái niệm hai tam giác đồng dạng - Phần 2 - Toán 8 - Thầy Phan Toàn
a) xét tam giác CIF và tam giác CBE:
\(\widehat{CBE}\) = \(\widehat{CIF}\)(= 90o)
\(\widehat{BCE}\) chung
=) \(\Delta\)CIF ~ \(\Delta\)CBE(g.g)
b) có AB // CD( t/c hình vuông)
=) BE// CD( E\(\in\)AB)
(=) \(\widehat{BEC}\)= \(\widehat{ECD}\)( so le trong) (1)
mà \(\Delta\)CIF~ \(\Delta\)CBE( cmt)
(=) \(\widehat{BEC=}\widehat{IFC}\)( góc t/ứ) (2)
tử (1) và(2) =) \(\widehat{ECD=}\widehat{IFC}\)
mà : \(\widehat{CIF=}\widehat{CID}\)( = 900)
=) \(\Delta IFC=\Delta ICD\)( g.g)
(=) \(\frac{IF}{IC}=\frac{IC}{ID}\)( cạnh t/ứ)
=) IC.IC= IF.ID
=) IC2= IF.ID
HÌNH BẠN TỰ VẼ NHA@
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
ABCDFGEKI
a, có : ^FAD + ^DAE = 90
^BAE + ^DAE = 90
=> ^FAD = ^BAE
xét tam giác FDA và tam giác EBA có : AB = AD do ABCD là hình vuông (gt)
^FDA = ^EBA = 90
=> tam giác FDA = tam giác EBA (cgv-gnk)
=> AF = AB (Đn)
=> tam giác AFB cân tại A (đn)
có AI là trung tuyến
=> AI _|_ EF (1)
xét tam giác GIE và tam giác KIF có : ^GIE = ^KIF (đối đỉnh)
FI = IE do I là trung điểm của EF (gt)
EG // FK (gT) => ^GEI = ^IFK (slt)
=> tam giác GIE = tam giác KIF (g-c-g)
=> EG = FK (đn)
mà EG // FK (gt)
=> EGFK là hình bình hành (dh) và (1)
=> EGFK là hình thoi (dh)
b, kẻ AC
AC là pg của ^BAC do ABCD là hình vuông (gt) => ^DAK + ^KAC = 45
tam giác AFE vuông cân (tự cm) => ^IAE = 45 => ^KAC + ^CAE = 45
=> ^DAK = ^CAE
tam giác ADK vuông tại D => ^AKD = 90 - ^DAK (đl)
^FAC = 90 - ^CAE
=> ^AKD = ^FAC
Xét tam giác AFK và tam giác AFC có : ^AFC chung
=> tam giác AFK đồng dạng với tam giác AFC (g-g)
=> AF/FC = FK/AF
=> AF^2 = KF.KC
c, có BD và AC là đường chéo của hình vuông ABCD
=> B;D thuộc đường trung trực của AC (2)
xét tam giác AFE vuông tại A có I là trung điểm của EF (gt) => AI = EF/2 (đl)
xét tam giác FEC vuông tại C có I là trung điểm của EF (gt) => CI = EF/2
=> AI = IC
=> I thuộc đường trung trực của AC và (2)
=> B;I;D thẳng hàng
d, Có EK = FK do EGFK là hình thoi (câu a)
FK = FD + DK
FD = BE do tam giác ABE = tam giác ADF (Câu a)
=> EK = BE + DK
có chu vi ECK = EC + KC + EK
=> chu vi ECK = EC + KC + BE + DK
= BC + DC
= 2BC
mà BC = 6
=> Chu vi ECK = 12
a: Xét ΔCIF vuông tại I và ΔCBE vuông tại B có
góc bCE chung
=>ΔCIF đồng dạg với ΔCBE
b: ΔFCD vuông tại C có CI là đường cao
nên CI^2=FI*ID