Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giảng học thử
Video không hỗ trỡ trên thiết bị của bạn!
Bài 9: Hình chữ nhật - Phần 1 - Toán 8 - Cô Diệu Linh
Video không hỗ trỡ trên thiết bị của bạn!
Bài 1. Định lí Ta-lét trong tam giác - Phần 1 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Đường trung bình của tam giác, của hình thang - Phần 2 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 3. Hình thang cân - Phần 3 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Khái niệm hai tam giác đồng dạng - Phần 2 - Toán 8 - Thầy Phan Toàn
Bài giảng học thử
Video không hỗ trỡ trên thiết bị của bạn!
Bài 9: Hình chữ nhật - Phần 1 - Toán 8 - Cô Diệu Linh
Video không hỗ trỡ trên thiết bị của bạn!
Bài 1. Định lí Ta-lét trong tam giác - Phần 1 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Đường trung bình của tam giác, của hình thang - Phần 2 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 3. Hình thang cân - Phần 3 - Toán 8 - Thầy Phan Toàn
Video không hỗ trỡ trên thiết bị của bạn!
Bài 4. Khái niệm hai tam giác đồng dạng - Phần 2 - Toán 8 - Thầy Phan Toàn
a) xét tam giác CIF và tam giác CBE:
\(\widehat{CBE}\) = \(\widehat{CIF}\)(= 90o)
\(\widehat{BCE}\) chung
=) \(\Delta\)CIF ~ \(\Delta\)CBE(g.g)
b) có AB // CD( t/c hình vuông)
=) BE// CD( E\(\in\)AB)
(=) \(\widehat{BEC}\)= \(\widehat{ECD}\)( so le trong) (1)
mà \(\Delta\)CIF~ \(\Delta\)CBE( cmt)
(=) \(\widehat{BEC=}\widehat{IFC}\)( góc t/ứ) (2)
tử (1) và(2) =) \(\widehat{ECD=}\widehat{IFC}\)
mà : \(\widehat{CIF=}\widehat{CID}\)( = 900)
=) \(\Delta IFC=\Delta ICD\)( g.g)
(=) \(\frac{IF}{IC}=\frac{IC}{ID}\)( cạnh t/ứ)
=) IC.IC= IF.ID
=) IC2= IF.ID
HÌNH BẠN TỰ VẼ NHA@
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK
giúp mình nhoa!!
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
a: Xét ΔCIF vuông tại I và ΔCBE vuông tại B có
góc bCE chung
=>ΔCIF đồng dạg với ΔCBE
b: ΔFCD vuông tại C có CI là đường cao
nên CI^2=FI*ID