\(\left(\dfrac{1}{7}\right)^{2020}.7^{2020}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài ko đúng em, tử số bên trái là 32 mới hợp lý chứ không phải 3.2
Ta có: \(\left|5x+7\right|+\left|5x-1\right|=\left|5x+7\right|+\left|1-5x\right|\ge\left|5x+7+1-5x\right|=8\) (1)
\(\left(2y+1\right)^{2020}\ge0\Rightarrow3\left(2y+1\right)^{2020}+4\ge4\)
\(\Rightarrow\dfrac{32}{3\left(2y+1\right)^{2020}+4}\le\dfrac{32}{4}=8\) (2)
Từ (1); (2) \(\Rightarrow\left|5x+7\right|+\left|5x-1\right|\ge\dfrac{32}{3\left(2y+1\right)^{2020}+4}\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(5x+7\right)\left(1-5x\right)\ge0\\2y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}\le x\le\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a: \(A=1-\dfrac{2\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}{4\left(25-\dfrac{2}{2018}+\dfrac{1}{2019}-\dfrac{1}{2020}\right)}\)
=1-2/4=1/2
b: \(B=\dfrac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot7^3\cdot2^3}\)
\(=\dfrac{5^{10}\cdot7^3\left(1-7\right)}{5^9\cdot7^3\left(1+2^3\right)}=5\cdot\dfrac{-6}{9}=-\dfrac{10}{3}\)
c: x-y=0 nên x=y
\(C=x^{2020}-x^{2020}+y\cdot y^{2019}-y^{2019}\cdot y+2019\)
=2019
\(=\dfrac{7}{6}\cdot\dfrac{3}{14}-\dfrac{4}{7}\cdot\dfrac{21}{8}+1=\dfrac{1}{4}-\dfrac{3}{2}+1=\dfrac{1}{4}-\dfrac{6}{4}+\dfrac{4}{4}=-\dfrac{1}{4}\)
a: \(=\dfrac{28-2-3}{4}:\dfrac{40-2-5}{8}=\dfrac{23}{4}\cdot\dfrac{8}{33}=\dfrac{46}{33}\)
b: =78(0,65+0,35)+2020(2,2-2,2)
=78*1=78
Bài 2:
Ta có: \(11^{1979}< 11^{1980}=1331^{660}\)
\(37^{1320}=37^{2\cdot660}=1369^{660}\)
mà \(1331^{660}< 1369^{660}\)
nên \(11^{1979}< 37^{1320}\)
\(y=\dfrac{1}{3x^2-x-2}=\dfrac{1}{\left(x-1\right)\left(3x+2\right)}=\dfrac{1}{5}.\dfrac{1}{x-1}-\dfrac{3}{5}.\dfrac{1}{3x+2}\)
\(y'=\dfrac{1}{5}.\dfrac{\left(-1\right)^1.1!}{\left(x-1\right)^2}-\dfrac{3}{5}.\dfrac{\left(-1\right)^1.3^1.1!}{\left(3x+2\right)^2}\)
\(y''=\dfrac{1}{5}.\dfrac{\left(-1\right)^2.2!}{\left(x-1\right)^3}-\dfrac{3}{5}.\dfrac{\left(-1\right)^2.3^2.2!}{\left(3x+2\right)^3}\)
\(\Rightarrow y^{\left(n\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^n.n!}{\left(x-1\right)^{n+1}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^n.3^n.n!}{\left(3x+2\right)^{n+1}}\)
\(\Rightarrow y^{\left(2019\right)}=\dfrac{1}{5}.\dfrac{\left(-1\right)^{2019}.2019!}{\left(x-1\right)^{2020}}-\dfrac{3}{5}.\dfrac{\left(-1\right)^{2019}.3^{2019}.2019!}{\left(3x+2\right)^{2019}}\)
\(=\dfrac{2019!}{5}\left(\dfrac{3^{2020}}{\left(3x+2\right)^{2020}}-\dfrac{1}{\left(x-1\right)^{2020}}\right)\)
\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
Ta có: \(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+2+...+2\right)+\left(3+3+3+...+3\right)+...+\left(2019+2019\right)+2020\)
Trong đó có: 2020 số 1, 2019 số 2, 2018 số 3,..., 2 số 2019, 1 số 2020
Vậy: \(\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+...+2020\)
\(=1\times2020+2\times2019+3\times2018+...+2020\times1\)
\(\Rightarrow A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
\(A=\dfrac{1\times2020+2\times2019+3\times2018+...+2020\times1}{1\times2020+2\times2019+3\times2018+...+2020\times1}=1\)
\(=1^{2020}=1\)
\(\left(\dfrac{1}{7}\right)^{2020}.7^{2020}\)
\(=\left(\dfrac{1}{7}.7\right)^{2020}\)
\(=\left(\dfrac{7}{7}\right)^{2020}\)
\(=1^{2020}\)
\(=1\)