\(\left|5x+7\right|+\left|5x-1\right|=\dfrac{3.2}{3\left(2y+1\right)^{2020}+4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2021

Đề bài ko đúng em, tử số bên trái là 32 mới hợp lý chứ không phải 3.2

Ta có: \(\left|5x+7\right|+\left|5x-1\right|=\left|5x+7\right|+\left|1-5x\right|\ge\left|5x+7+1-5x\right|=8\) (1)

\(\left(2y+1\right)^{2020}\ge0\Rightarrow3\left(2y+1\right)^{2020}+4\ge4\)

\(\Rightarrow\dfrac{32}{3\left(2y+1\right)^{2020}+4}\le\dfrac{32}{4}=8\) (2)

Từ (1); (2) \(\Rightarrow\left|5x+7\right|+\left|5x-1\right|\ge\dfrac{32}{3\left(2y+1\right)^{2020}+4}\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(5x+7\right)\left(1-5x\right)\ge0\\2y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}\le x\le\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

17 tháng 2 2017

a,thay x=1,y=-1

=>A=(15.1+2.-1)-[(2.1+3)-(5.1+-1)]=13-[5-4]=12

b,thay=-1/2,y=1/7

=>B=4

17 tháng 2 2017

thks yeu

7 tháng 8 2017

Nguyễn Huy Tú Nguyễn Thanh Hằng

7 tháng 8 2017

1)

\(\left|2x-3\right|=2x-3\)

\(\Leftrightarrow\) \(2x-3\ge0\)

\(\Leftrightarrow\) \(2x\ge3\)

\(\Leftrightarrow\) \(x\ge\dfrac{3}{2}\)

2)

\(\left|5x-\dfrac{2}{3}\right|=\dfrac{2}{3}-5x\)

\(\Leftrightarrow\) \(5x-\dfrac{2}{3}\le0\)

\(\Leftrightarrow\) \(5x\le\dfrac{2}{3}\)

\(\Leftrightarrow\) \(x\le\dfrac{2}{15}\)

3)

\(\left|3-x\right|+\left|2y-5\right|\le0\)\(\left\{{}\begin{matrix}\left|3-x\right|\ge0\\\left|2y-5\right|\ge0\end{matrix}\right.\)

nên \(\left|3-x\right|+\left|2y-5\right|=0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left|3-x\right|=0\\\left|2y-5\right|=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3-x=0\\2y-5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\2y=5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\y=\dfrac{5}{2}\end{matrix}\right.\)

a) Ta có: \(5x^2-3x\left(x+2\right)\)

\(=5x^2-3x^2-6x\)

\(=2x^2-6x\)

b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)

\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)

\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)

\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)

d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)

\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)

\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)

\(=-4x^2y+5x^2-2x\)

e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)

\(=4x^4-16x^3+4x^4-2x^3+14x^2\)

\(=8x^4-18x^3+14x^2\)

f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)

\(=25x-12x+4+35x-14x^3\)

\(=-14x^3+48x+4\)

12 tháng 9 2017

\(a,\left|2x+3\right|+x=4\)

\(\Rightarrow\left|2x+3\right|=4-x\)

Điều kiện :\(4-x\ge0\Rightarrow x\le4\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=4-x\\2x+3=x-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x+x=4-3\\2x-x=-4-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x=1\\x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-7\end{matrix}\right.\)

Xét cả 2 trường hợp trên đều thỏa mãn điều kiện

Vậy ...

19 tháng 9 2017

cau nay chac chan duoc gp

26 tháng 11 2017

\(2^{x-2}-3.2^x=-88\)

\(2^x:2^2-2^x:\frac{1}{3}=-88\)

\(2^x:\left(2^2-\frac{1}{3}\right)=-88\)

\(2^x:\frac{11}{3}=-88\)

\(2^x=-88.\frac{11}{3}\)

\(2^x=\frac{-968}{3}\)

26 tháng 11 2017

\(2^{x-2}-\)\(3.2^x=-88\)

\(2^x:2^2-2^x.3=-88\)

\(2^x.\frac{1}{4}-\)\(2^x.3=-88\)

\(2^x.\left(\frac{1}{4}-3\right)=-88\)

\(2^x.\frac{-11}{4}=-88\)

\(2^x=-88:\frac{-11}{4}\)

\(2^x=32\)

\(2^x=2^5\)

\(\Rightarrow x=5\)

20 tháng 7 2018

A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)

= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)

= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)

= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)

= \(\dfrac{215}{1}=215\)

20 tháng 7 2018

B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)

= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)

= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)

= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)

= \(\dfrac{300}{2}=150\)

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt