Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,thay x=1,y=-1
=>A=(15.1+2.-1)-[(2.1+3)-(5.1+-1)]=13-[5-4]=12
b,thay=-1/2,y=1/7
=>B=4
1)
\(\left|2x-3\right|=2x-3\)
\(\Leftrightarrow\) \(2x-3\ge0\)
\(\Leftrightarrow\) \(2x\ge3\)
\(\Leftrightarrow\) \(x\ge\dfrac{3}{2}\)
2)
\(\left|5x-\dfrac{2}{3}\right|=\dfrac{2}{3}-5x\)
\(\Leftrightarrow\) \(5x-\dfrac{2}{3}\le0\)
\(\Leftrightarrow\) \(5x\le\dfrac{2}{3}\)
\(\Leftrightarrow\) \(x\le\dfrac{2}{15}\)
3)
\(\left|3-x\right|+\left|2y-5\right|\le0\) mà \(\left\{{}\begin{matrix}\left|3-x\right|\ge0\\\left|2y-5\right|\ge0\end{matrix}\right.\)
nên \(\left|3-x\right|+\left|2y-5\right|=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left|3-x\right|=0\\\left|2y-5\right|=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3-x=0\\2y-5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\2y=5\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\y=\dfrac{5}{2}\end{matrix}\right.\)
a) Ta có: \(5x^2-3x\left(x+2\right)\)
\(=5x^2-3x^2-6x\)
\(=2x^2-6x\)
b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)
\(=3x^2-15x-5x^2-35x\)
\(=-2x^2-50x\)
c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)
\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)
\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)
d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)
\(=-4x^2y+5x^2-2x\)
e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)
\(=4x^4-16x^3+4x^4-2x^3+14x^2\)
\(=8x^4-18x^3+14x^2\)
f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)
\(=25x-12x+4+35x-14x^3\)
\(=-14x^3+48x+4\)
\(a,\left|2x+3\right|+x=4\)
\(\Rightarrow\left|2x+3\right|=4-x\)
Điều kiện :\(4-x\ge0\Rightarrow x\le4\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=4-x\\2x+3=x-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+x=4-3\\2x-x=-4-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=1\\x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-7\end{matrix}\right.\)
Xét cả 2 trường hợp trên đều thỏa mãn điều kiện
Vậy ...
\(2^{x-2}-3.2^x=-88\)
\(2^x:2^2-2^x:\frac{1}{3}=-88\)
\(2^x:\left(2^2-\frac{1}{3}\right)=-88\)
\(2^x:\frac{11}{3}=-88\)
\(2^x=-88.\frac{11}{3}\)
\(2^x=\frac{-968}{3}\)
\(2^{x-2}-\)\(3.2^x=-88\)
\(2^x:2^2-2^x.3=-88\)
\(2^x.\frac{1}{4}-\)\(2^x.3=-88\)
\(2^x.\left(\frac{1}{4}-3\right)=-88\)
\(2^x.\frac{-11}{4}=-88\)
\(2^x=-88:\frac{-11}{4}\)
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
Đề bài ko đúng em, tử số bên trái là 32 mới hợp lý chứ không phải 3.2
Ta có: \(\left|5x+7\right|+\left|5x-1\right|=\left|5x+7\right|+\left|1-5x\right|\ge\left|5x+7+1-5x\right|=8\) (1)
\(\left(2y+1\right)^{2020}\ge0\Rightarrow3\left(2y+1\right)^{2020}+4\ge4\)
\(\Rightarrow\dfrac{32}{3\left(2y+1\right)^{2020}+4}\le\dfrac{32}{4}=8\) (2)
Từ (1); (2) \(\Rightarrow\left|5x+7\right|+\left|5x-1\right|\ge\dfrac{32}{3\left(2y+1\right)^{2020}+4}\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(5x+7\right)\left(1-5x\right)\ge0\\2y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}\le x\le\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)