Chứng minh :
A = 1/2^2 + 1/2^3 + 1/2^4 + ... + 1/2^2020 < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/1^2 + 1/2^2 + 1/3^2 + ... + 1/2020^2
1/2^2 < 1/1.2
1/3^2 < 1/2.3
...
1/2020^2 < 1/2019.2020
=> A < 1 + 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2019*2020
=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2019 - 1/2020
=> A < 2 - 1/2020
=> A < 4039/2020 < 7/4
=> a < 7/4
4A=1-1/2^2+1/2^4-...+1/2^2018-1/2^2020
=>5A=1-1/2^2022
=>A=1/5-1/5*2^2022<1/5=0,2
Sai đề rồi.
Đề phải là: \(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
Giải như sau:
\(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+...+\frac{1}{2020}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\left(đpcm\right).\)
vì: \(\dfrac{1}{4^2}< \dfrac{1}{4}\)
\(\dfrac{1}{6^2}< \dfrac{1}{4}\)
........
\(\dfrac{1}{2020^2}< \dfrac{1}{4}\)
=> \(\dfrac{1}{4^2}+\dfrac{1}{6^2}+.......+\dfrac{1}{2020^2}< \dfrac{1}{4}\)
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
`1/2^2 < 1/(1.2)`
`1/3^3 < 1/(2.3)`
`...`
`1/(2020^2) < 1/(2019.2020)`
`=> A < 1/(1.2) + 1/(2.3) + ... + 1/(2019.2020)`
`=> A < 1/1 - 1/2 + 1/2 - 1/3 + ... + 1/2019 - 1/2020 < 1`.
\(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{2020^2}< \dfrac{1}{2019.2020}\)
Vậy \(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2019.2020}=\dfrac{1}{1}-\dfrac{1}{2020}=\dfrac{2019}{2020}< \dfrac{2020}{2020}=1\)
nhận xét
1/2 < 1 ; 2/3 < 1 ; 3/4 < 1 ; ... ; 2019/2020 <1.
vậy 1/2 + 2/3 + 3/4 + ...+2019/2020 <1
Ta có \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)
=>\(\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}\left(\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
Áp dụng ta có \(\frac{1}{5}=\frac{1}{1^2+2^2}< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}\right)\)
\(\frac{1}{13}=\frac{1}{2^2+3^2}< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)\)
..................................................................
\(\frac{1}{2019^2+2020^2}< \frac{1}{2}\left(\frac{1}{2019}-\frac{1}{2020}\right)\)
=> \(VT< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\right)=\frac{1}{2}\left(1-\frac{1}{2020}\right)< \frac{1}{2}\)(ĐPCM)
\(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2020}}\)
=> \(2A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2019}}\)
=> 2A - A = \(\frac{1}{2}-\frac{1}{2^{2020}}< \frac{1}{2}< 1\)
=> A < 1.