\(\frac{1}{4}< \frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^5}+...+\frac{2020}{5^{2020}}\)

\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+\frac{4}{5^3}+...+\frac{2020}{5^{2019}}\)

\(\Rightarrow5A-A=4A=1+\left(\frac{2}{5}-\frac{1}{5}\right)+\left(\frac{3}{5^2}-\frac{2}{5^2}\right)+...+\left(\frac{2020}{5^{2019}}-\frac{2019}{5^{2019}}\right)-\frac{2020}{5^{2020}}\)

\(\Leftrightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}-\frac{2020}{5^{2020}}\)

\(B=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(\Rightarrow5B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(\Rightarrow4B=1-\frac{1}{5^{2019}}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{4.5^{2019}}\)

\(\Rightarrow4A=1+B-\frac{2020}{5^{2020}}\)

\(\Rightarrow A=\frac{5}{16}-\frac{1}{5^{2019}}\left(\frac{1}{4}+\frac{2020}{5}\right)=\frac{5}{16}-\frac{1617}{4.5^{2019}}\)

\(16>\frac{1617}{4.5^{2019}}\Rightarrow A=\frac{1}{4}+\left(\frac{1}{16}-\frac{1617}{4.5^{2019}}\right)>\frac{1}{4}\)

\(\frac{5}{16}< \frac{1}{3}\Rightarrow A< \frac{1}{3}\)

\(\Rightarrow\frac{1}{4}< A< \frac{1}{3}\left(Đpcm\right)\)

27 tháng 7 2015

OK. Tối nhớ giải hộ mik nha

Mik hứa sẽ lik-e cho bạn

 

26 tháng 2 2017

mình ko biết

21 tháng 3 2020

Cô chữa chưa bạn >>>

Cho mk xin lời giải đk ko ?

                                 Giúp vs.. Mơn nhìu lắm!!!

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

24 tháng 7 2020

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)

Cộng vế theo vế 

\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)

\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)

Lại có \(\frac{7}{8}< 1\)

Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

28 tháng 8 2020

b)

\(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(21.\frac{1}{2}\right)\)

\(\Rightarrow\frac{41}{9}:\frac{41}{18}-7< x< \left(\frac{16}{5}:\frac{16}{5}+\frac{9}{2}.\frac{76}{45}\right):\frac{21}{2}\)

\(\Rightarrow2-7< x< \left(1+\frac{38}{5}\right):\frac{21}{2}\)

\(\Rightarrow-5< x< \frac{43}{5}:\frac{21}{2}\)

\(\Rightarrow-5< x< \frac{86}{105}\)

\(x\in Z\left(gt\right)\)

\(\Rightarrow x\in\left\{-4;-3;-2;-1;0\right\}.\)

Vậy \(x\in\left\{-4;-3;-2;-1;0\right\}.\)

26 tháng 6 2020

\(A=\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)

\(\Leftrightarrow5A=\frac{1}{5}+\frac{2}{5^2}+......+\frac{99}{5^{99}}\)

\(\Leftrightarrow5A-A=\left(\frac{1}{5}+\frac{2}{5^2}+....+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)

\(\Leftrightarrow4A=\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

Đặt : \(H=\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}\)

\(\Leftrightarrow5H=1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\)

\(\Leftrightarrow5H-H=\left(1+\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{98}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)

\(\Leftrightarrow4H=1-\frac{1}{5^{99}}\)

\(\Leftrightarrow H=\frac{1}{4}-\frac{1}{4.5^{99}}< \frac{1}{4}\)

\(\Leftrightarrow4A< B< \frac{1}{4}\)

\(\Leftrightarrow A< \frac{1}{16}\left(đpcm\right)\)

31 tháng 3 2020

\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

+) Chứng minh: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Có: \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

+) Chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)

\(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Trước hết ta phải chứng minh \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{3}\)

Ta có \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

Sau đó chứng minh \(\frac{1}{5}< \frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)\(>\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{4}-\frac{1}{101}=\frac{1}{5}+\frac{1}{20}-\frac{1}{101}>\frac{1}{5}\)

Vậy .................