K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Thôi trả lời mấy câu này giúp mấy e vậy, kiếm mãi ko nổi 1 cái cho đẹp tcn ... (P/s : trình độ kém quá .-.)

\(\frac{2x-1}{8}=\frac{2}{2x-1}\)

\(\Leftrightarrow\left(2x-1\right)^2=16\)

\(\Leftrightarrow\left(2x-1\right)^2=4^2\)

\(\Leftrightarrow\left(2x-1\right)^2=\left(\pm4\right)^2\)

TH1 : \(2x-1=4\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\)

TH2 : \(2x-1=-4\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)

5 tháng 6 2020

Bài làm

@Thủy: Lớp 6 chưa học hằng đẳng thức. 

\(\frac{2x-1}{8}=\frac{2}{2x-1}\)       ĐKXĐ: x khác 1/2

=> \(\frac{\left(2x-1\right)\left(2x-1\right)}{8\left(2x-1\right)}=\frac{2.8}{8\left(2x-1\right)}\)

=> ( 2x - 1 )( 2x - 1 ) = 16

=> [( 2x - 1 ) . 2x ] - [( 2x - 1 ) . 1 ] = 16

=> 4x2 - 2x - 2x + 1 = 16

=> 4x2 - 4x + 1 - 16 = 0

=> 4x2 - 4x - 15 = 0

=> 4x2 - 10x + 6x - 15 = 0

=> 4x( 2x - 5 ) + 3( 2x - 5 ) = 0

=> ( 4x + 3 )( 2x - 5 ) = 0

=> \(\orbr{\begin{cases}4x+3=0\\2x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{4}\\x=\frac{5}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{4}\\x=\frac{5}{2}\end{cases}}}\)

Vậy x = -3/4 hoặc x = 5/2.

20 tháng 5 2016

\(\frac{1}{2x^2+10x+12}+\frac{1}{2x^2+14x+24}+\frac{1}{2x^2+18x+40}+\frac{1}{2x^2+22x+60}=\frac{1}{8}\)

<=> \(\frac{1}{2x^2+6x+4x+12}+\frac{1}{2x^2+6x+8x+24}+\frac{1}{2x^2+8x+10x+40}+\frac{1}{2x^2+12x+10x+60}=\frac{1}{8}\)

<=> \(\frac{1}{2x\left(x+3\right)+4\left(x+3\right)}+\frac{1}{2x\left(x+3\right)+8\left(x+3\right)}+\frac{1}{2x\left(x+4\right)+10\left(x+4\right)}+\frac{1}{2x\left(x+6\right)+10\left(x+6\right)}=\frac{1}{8}\)

<=> \(\frac{1}{\left(x+3\right)\left(2x+4\right)}+\frac{1}{\left(x+3\right)\left(2x+8\right)}+\frac{1}{\left(x+4\right)\left(2x+10\right)}+\frac{1}{\left(x+6\right)\left(2x+10\right)}=\frac{1}{8}\)

<=> \(\frac{1}{2\left(x+2\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)\left(x+4\right)}+\frac{1}{2\left(x+4\right)\left(x+5\right)}+\frac{1}{2\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)

<=> \(\frac{1}{2}.\left[\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\right]=\frac{1}{8}\)

<=> \(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}:\frac{1}{2}\)

<=> \(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{4}\)

<=> \(\frac{4\left(x+6\right)-4\left(x+2\right)}{4\left(x+2\right)\left(x+6\right)}=\frac{\left(x+2\right)\left(x+6\right)}{4\left(x+2\right)\left(x+6\right)}\)

<=> \(4\left(x+6\right)-4\left(x+2\right)=\left(x+2\right)\left(x+6\right)\)

<=> \(4\left(x+6-x-2\right)=x^2+8x+12\)

<=> \(4.4=x^2+8x+12\)

<=> \(x^2+8x-4=0\)

<=> ...

Đến đây bạn tự giải tiếp. Mình bấm máy 570ES PLUS II thì ra nghiệm \(x\approx0,47\).

 

 

20 tháng 5 2016

icon-chat

29 tháng 3 2020

\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4x^2-1}\)

\(\Leftrightarrow\frac{\left(2x+1\right)^2}{4x^2-1}-\frac{\left(2x-1\right)^2}{4x^2-1}=\frac{8}{4x^2-1}\)

\(\Leftrightarrow\frac{4x^2+4x+1-4x^2+4x-1-8}{4x^2-1}=0\)

\(\Leftrightarrow\frac{8x-8}{4x^2-1}=0\)

\(\Rightarrow8x-8=0\)

\(\Rightarrow x=1\)

tick mình nha!

29 tháng 3 2020

\(\Leftrightarrow\frac{\left(2x+1\right)^2}{4x^2-1}-\frac{\left(2x-1\right)^2}{4x^2-1}=\frac{9}{4x^2-1}\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2x-1\right)^2=9\)

\(\Leftrightarrow4x^2+4x+1-4x^2+4x+1=9\)

\(\Leftrightarrow8x=7\)

Vậy x=7/8

20 tháng 1 2018

\(\left(2x+1\right)^2-\left(2x-1\right)^2-8=0\)  quy đồng khử mẫu

\(4x^2+4x+1-4x^2+4x-1-8=0\)

\(8x=8\)

\(x=1\)

12 tháng 5 2018

\(DKXD:x#\frac{1}{2}va-\frac{1}{2}\)

suy ra \(\left(2x+1\right)8+\left(2x-1\right)\left(2x-1\right)=\left(2x+1\right)\left(2x+1\right)\)

tương đương  \(16x+8+4x^2-4x+1=4x^2+4x+1\)

tương đương \(8x+8=0\)

tương đương\(8\left(x+1\right)=0\)

khi và chỉ khi  \(x=0\left(nhan\right)\)

\(s\left\{0\right\}\)

10 tháng 2 2020

Bạn sửa lại đề dùm mình nha, sai đề hơi nhiều đó.

ĐKXĐ:\(x\ne0;2\)

\(P=\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2+2x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\\ P=\left(\frac{x\left(x-2\right)}{2\left(x^2+4\right)}-\frac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right).\frac{x^2-x-2}{x^2}\\ P=\left(\frac{x\left(x-2\right)}{2\left(x^2+4\right)}+\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right).\frac{x^2-2x+x-2}{x^2}\\ P=\left(\frac{x\left(x-2\right)^2}{2\left(x^2+4\right)\left(x-2\right)}+\frac{4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right).\frac{x\left(x-2\right)+\left(x-2\right)}{x^2}\)

\(P=\frac{x\left(x^2-4x+4\right)+4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\frac{x^3-4x^2+4x-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{x^2}\\ P=\frac{\left(x^3+4x\right)\left(x-2\right)\left(x+1\right)}{2\left(x^2+4\right)\left(x-2\right).x^2}\\ P=\frac{x\left(x^2+4\right)\left(x-2\right)\left(x+1\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\\ P=\frac{x+1}{2x}\)

10 tháng 2 2020

Bạn thông cảm tại mắt mk hơi yếu với lại chữ mk ko đc đẹp lắm nên nhiểu khi chép đề sai ạ! Cảm ơn bn vì đã giải giúp mk ạ!

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}