\(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}=\frac{8}{4x^2-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

\(\left(2x+1\right)^2-\left(2x-1\right)^2-8=0\)  quy đồng khử mẫu

\(4x^2+4x+1-4x^2+4x-1-8=0\)

\(8x=8\)

\(x=1\)

15 tháng 4 2019

a, 3-4x(25-2x)=8x^2+x-30

<=> 3-100x+8x^2=8x^2+x-30

<=>3-100x+8x^2-8x^2-x+30=0

<=>-101x+33=0

<=>-101x=-33

<=>x=\(\dfrac{33}{101}\)

Vậy S={\(\dfrac{33}{101}\) }

b,(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)[(3x-2)-(5x-8)]=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(-2x+6)=0

=> 2x+1=0 hoặc -2x+6=0

+) 2x+1=0

<=>2x=-1

<=>x=-1/2

+)-2x+6=0

<=>-2x=-6

<=>x=3

vậy S={-1/2;3}

c,d, do mình lười quá nên mình ghi luôn kết quả nhé : c, x= \(\dfrac{1}{2}\)

d, x=5

16 tháng 4 2019

Thanks, nếu mà bạn có thời gian nội trong tuần nay thì bạn chỉ cách làm câu (d) đc ko ạ. Do tuần sau mình thi rồi nên cần, pls

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

30 tháng 4 2019

ttiiok

30 tháng 4 2019

a,\(2x\left(x-3\right)=x-3.\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy ..... 

b, \(\frac{x+2}{x-2}-\frac{5}{x}=\frac{8}{x^2-2x}\)

\(\Leftrightarrow\frac{\left(x+2\right)\cdot x}{\left(x-2\right)\cdot x}-\frac{5\left(x-2\right)}{x\left(x-2\right)}=\frac{8}{x^2-2x}\)

\(\Leftrightarrow\frac{x^2+2x-\left(5x-10\right)}{\left(x-2\right)x}=\frac{8}{x^2-2x}\)

\(\Leftrightarrow\frac{x^2+2x-5x+10}{x^2-2x}=\frac{8}{x^2-2x}\)

\(\Leftrightarrow x^2+2x-5x+10=8\)

\(\Leftrightarrow x^2-3x+10-8=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy ....

31 tháng 1 2019

câu a tự quy đồng cùng  mẫu rồi làm thôi :"))

b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)

\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)

Đặt \(x^2-x=k\), ta có:

\(k.\left(k-2\right)=24\)

\(\Leftrightarrow k^2-2k+1=25\)

\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)

\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)

c)\(x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)

\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)

p/s: bn tự kết luận nha :))

25 tháng 4 2017

a)\(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)

   \(84x+63-90x+30=175x+140+315\)

    93-6x=175x+455

     -362=181x

       x=-2

25 tháng 4 2017

b)\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

   \(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)

      \(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

        \(\left(3x+1\right)\left(-x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)

19 tháng 6 2020

a) \(\frac{1-2x}{4}-2< \frac{1-5x}{8}+x\)

\(\Leftrightarrow\frac{2\left(1-2x\right)}{8}-\frac{16}{8}< \frac{1-5x}{8}+\frac{8x}{8}\)

\(\Leftrightarrow2-4x-16< 1-5x+8x\)

\(\Leftrightarrow-4x-14< 1-3x\)

\(\Leftrightarrow-x< 15\)

\(\Leftrightarrow x>-15\)

Vậy bất phương trình có tập nghiệm là: S ={x| x > -15}

b) \(\frac{1-x}{3}< \frac{x+4}{2}\)

\(\Leftrightarrow2\left(1-x\right)< 3\left(x+4\right)\)

\(\Leftrightarrow2-2x< 3x+12\)

\(\Leftrightarrow-5x< 10\)

\(\Leftrightarrow x>-2\)

Vậy bất phương trình có tập nghiệm là: S ={x| x > -2}

c) \(\frac{2x-3}{2}>\frac{8x-11}{6}\)

\(\Leftrightarrow3\left(2x-3\right)>8x-11\)

\(\Leftrightarrow6x-9>8x-11\)

\(\Leftrightarrow-2x>-2\)

\(\Leftrightarrow x< 1\)

Vậy bất phương trình có tập nghiệm là: S ={x| x < 1}

19 tháng 6 2020

thansk you nha :)

21 tháng 5 2021

\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)

\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)

\(< =>12x-20-14x-21=0\)

\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)

21 tháng 5 2021

\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)

\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)

\(< =>8x+12+4x-2x+3=0\)

\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)

20 tháng 1 2019

\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)

Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)

\(\Leftrightarrow4x-2-6x-3=4\)

\(\Leftrightarrow-2x=9\)

\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)

Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)

\(b,ĐKXĐ:x\ne\pm1;-3\)

Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)

\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)

\(\Leftrightarrow9x^2+14x+13=0\)

\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)

\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)

Pt vô nghiệm 

\(c,ĐKXĐ:x\ne1\)

Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\pm1\)

Kết hợp vs ĐKXĐ được x = -1

Vậy pt có nghiệm duy nhất x = -1

20 tháng 1 2019

làm lần lượt nha(bài nào k bt bỏ qua)

\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)

\(\Rightarrow-2x-5=4\)

\(\Rightarrow-2x=9\)

\(\Rightarrow x=\frac{9}{-2}\)