CMR : Mọi số tự nhiên : M = (2a)(2b)(2a)abc đều chia hết cho 3 ; 23 ; 29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chung các số tự nhiên có 3 chữ số khác nhau là aaa.
Ta có:
aaa = a . 111 = a . ( 3 . 37) = 3a . 37 chia hết cho 37.
Vậy mọi số tự nhiên có 3chữ số giống nhau đều chia hết cho 37
Gọi 3 chữ số tự nhiên giống nhau là aaa
Ta có: aaa=a.111=a.373 chia hết cho 37
Suy ra: mọi số tự nhiên có 3 chữ số giống nhau đều chia hất cho 37
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
câu 1: sai vì số 0 k có số liền trước trong tập hợp các số tự nhiên
câu 2:đúng. vì số tự nhiên là vô hạn
bạn sai rồi trần thùy dung, liền sau có nghĩa là số liền ngay sau
Ta có: \(\overline{abc}⋮37\Leftrightarrow100a+10b+c⋮37\)(1)
+) (1) => \(10\left(100a+10b+c\right)⋮37\)
<=> \(100b+10c+a+999a⋮37\) mà \(999a=37.27a⋮37\)
=> \(100b+10c+a⋮37\Leftrightarrow\overline{bca}⋮37\)
+) (1) => \(100\left(100a+10b+c\right)⋮37\)
<=> \(\left(100c+10a+b\right)+999\left(10a+b\right)⋮37\)mà \(999\left(10a+b\right)=37.27\left(10a+b\right)⋮37\)
=> \(\overline{cab}=100c+10a+b⋮37\)
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn