tìm 1 số có 2 chữ số, biết rằng tổng của 2 chữ số ấy = 12 và khi thay đồi thứ tự 2 chữ số thì đc 1 số lớn hơn số cũ là 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có hệ:
a+b=12 và 10b+a-10a-b=18
=>a+b=12 và -9a+9b=18
=>a+b=12 và a-b=-2
=>a=5; b=7
Gọi số cần tìm là ab ( a,b là chữ số; a khác 0 )
Nếu đổi chỗ 2 chữ số cho nhau thì ta được số ba ( a,b là chữ số; b khác 0 )
Ta xét tổng ab + ba. Vì a + b = 12 => ab + ba = 132
Vậy số cần tìm là:
( 132 - 18 ) : 2 = 57
Đáp số: 57
Gọi số cần tìm là ab ( a,b là chữ số; a khác 0 )
Nếu đổi chỗ 2 chữ số cho nhau thì ta được số ba ( a,b là chữ số; b khác 0 )
Ta xét tổng ab + ba. Vì a + b = 12 => ab + ba = 132
Vậy số cần tìm là: ( 132 - 18 ) : 2 = 57
Đáp số: 57
Gọi chữ số hàng đơn vị là x ( ĐK: \(x\in N,0< x\le9\))
Khi đó chữ số hàng chục là (10-x).
Số cần tìm là \(\overline{\left(10-x\right)x}\), số mới là \(\overline{x\left(10-x\right)}\)
Từ đó ta có phương trình: \(\overline{x\left(10-x\right)}-\overline{\left(10-x\right)x}=36\Rightarrow10x+10-x-10\left(10-x\right)-x=36\)
\(\Leftrightarrow x=7\)
Vậy số cần tìm là 37.
Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(0< a< 10;0< b< 10\right)\)
Vì 2 lần chữ số hàng chục lớn hơn 3 lần chữ số đơn vị là 2
=> PT : 2a - 3b = 2 (1)
Lại có khi viết ngược lại số mới nhỏ hơn số ban đầu 18 đơn vị
=> PT : \(\overline{ab}-\overline{ba}=18\)
<=> a - b = 2 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}2a-3b=2\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(b+2\right)-3b=2\\a=b+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=4\end{matrix}\right.\)
Vậy số cần tìm là 42
Gọi số tự nhiên đó là \(\overline{ab}\) ( \(a\ne0;0\le a;b\le9;\left(a,b\right)\in Z^+\) )
Vì chữ số hàng chục lớn hơn chữ số hàng đơn vị 18 đơn vị
\(\Rightarrow5a-b=18\)
Vì nếu 2 chữ số viết theo thứ tự ngược lại được số mới lớn hơn số cũ 18 đơn vị \(\Rightarrow\overline{ba}-\overline{ab}=18\)
Ta có hệ:
\(\left\{{}\begin{matrix}5a-b=18\\\overline{ba}-\overline{ab}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=5a-18\\10b+a-10a-b=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b-a=2\\b=5a-18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5a-18-a=2\\b=5a-18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=7\end{matrix}\right.\)
Vậy số tự nhiên cần tìm là \(57\)