Tìm nghiệm của đa thức sau:
1. 8 x2 + \(\frac{1}{2}\)x2.
2. 125 x2019 + x2016.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
a,x2−2=0⇔x2−(2)2=0⇔(x−2)(x+2)=0⇔[x=2x=−2
Vậy �={−2;2}S={−2;2}
�,�(�−2)=0⇔[�=0�=2b,x(x−2)=0⇔[x=0x=2
Vậy �={0;2}S={0;2}
�,�2−2�=0⇔�(�−2)c,x2−2x=0⇔x(x−2) phương trình như câu b,
�,�(�2+1)⇔[�=0�2+1=0⇔[�=0�2=−1(����)d,x(x2+1)⇔[x=0x2+1=0⇔[x=0x2=−1(voli)( voli là vô lí )
Vậy �={0}S={0}
Ta có: (x – 1)(x2 + 1) = 0
Vì x2 ≥ 0 với mọi giá trị của x ∈ R nên:
x2 + 1 > 0 với mọi x ∈ R
Suy ra: (x – 1)(x2 + 1) = 0 ⇔ x – 1 = 0 ⇔ x = 1
Vậy x = 1 là nghiệm của đa thức (x – 1)(x2 + 1)
1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3
F(0) = 2. 02 – 3 . 0 – 2 = -2
F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
\(Sửa,đề:x^2-10x+25\\ =x^2-2x.5+5^2=\left(x-5\right)^2=\left(x-5\right)\left(x-5\right)\\---\\ b,x^3+125=x^3+5^3=\left(x+5\right)\left(x^2-5x+25\right)\\ ---\\ 8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
a, Bạn xem lại đề vì không thể tách được.
b, \(x^3+125\\ =x^3+5^3=\left(x+5\right)\left(x^2-5x+25\right)\)
c, \(8x^3-y^3\\ =\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
a/ \(M\left(x\right)=-x^2+5\)
Có \(-x^2\le0\forall x\)
=> \(M\left(x\right)\le5\forall x\)
=> M(x) không có nghiệm.
2/
Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có
\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)
\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)
\(\Leftrightarrow a=2\)
Vậy...
a) Ta có: P(\( - \dfrac{1}{8}\)) = 4.(\( - \dfrac{1}{8}\))+ \(\dfrac{1}{2}\)= (-\(\dfrac{1}{2}\)) + \(\dfrac{1}{2}\) = 0
Vậy \(x = - \dfrac{1}{8}\) là nghiệm của đa thức P(x) = 4x + \(\dfrac{1}{2}\)
b) Q(1) = 12 +1 – 2 = 0
Q(-1) = (-1)2 + (-1) – 2 = -2
Q(2) = 22 + 2 – 2 = 4
Vì Q(1) = 0 nên x = 1 là nghiệm của Q(x)
Bài làm
a) Để 8x² + 1/2x² có nghiệm
<=> 8x² + 1/2x² = 0
=> x²( 8 + 1/2 ) = 0
=> x² = 0 : ( 8 + 1/2 )
=> x² = 0
=> x = 0
Vậy x = 0 là nghiệm phương trình
b) Để 125x²⁰¹⁹ + x²⁰¹⁶ có nghiệm
<=> 125x²⁰¹⁹ + x²⁰¹⁶
=> x²⁰¹⁶( 125x³ + 1 ) = 0
=> x²⁰¹⁶ = 0 hoặc 125x³ + 1 = 0
=> x²⁰¹⁶ = 0²⁰¹⁶ hoặc 125x³ = -1
=> x = 0 hoặc x³ = -1/125
=> x = 0 hoặc x = -1/5
Vậy x = 0 hoặc x = -1/5 là nghiệm phương trình