K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

\(a^2\text{≡}0,1\left(mod4\right)\)

⇒ \(a^4\text{≡}0,1\left(mod16\right)\)

⇒ (đpcm)

27 tháng 6 2021

a, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow a^2+2ab+b^2=\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

b, Ta có : \(a^2+b^2\ge2ab\) ( cauchuy )

\(\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

 

ab≤a2+b2/2

22 tháng 1 2022

- Uả vế phải lớn hơn hoặc bằng vế trái chứ nhỉ?

21 tháng 9 2019

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ac\right)\right]^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)

Mà \(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+a^2c^2+abc\left(a+b+c\right)\)

\(=a^2b^2+b^2c^2+a^2c^2\)

nên \(a^4+b^4+c^4=4\left(ab+bc+ac\right)^2-2\left(ab+bc+ac\right)^2\)

\(a^4+b^4+c^4=2\left(ab+bc+ac\right)^2\left(đpcm\right)\)

22 tháng 9 2019

thanks

31 tháng 10 2018

\(\left(a+3\right).\left(b-4\right)-\left(a-3\right).\left(b+4\right)=0\)

\(\Rightarrow\left(a+3\right).\left(b-4\right)=\left(a-3\right).\left(b+4\right)\)

\(\Rightarrow\frac{a-3}{a+3}=\frac{b-4}{b+4}\)

\(=>\frac{a}{a+3}-\frac{3}{a+3}=\frac{b}{b+4}-\frac{4}{b+4}\)

\(\frac{a}{a+3}=\frac{b}{b+4}\Rightarrow a.\left(b+4\right)=b.\left(a+3\right)\Rightarrow ab+4a=ab+3b\)

\(\Rightarrow4a=3b\Rightarrow\frac{a}{3}=\frac{b}{4}\left(đpcm\right)\)

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6