Chứng minh rằng khi m thay đổi thì các đường thẳng 2x+(m-1)y=1 luôn đi qua 1 điểm cố định. tìm toạ độ của điểm cố định đó
GIÚP MÌNH VỚI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi điểm cố định mà đthẳng luôn đi qua là A(x0;y0)
Thay x=x0 ; y=y0 vào đường thẳng đã cho ta được
y0=(m + 4)x0 + 6
↔mx0 + 4x0 + 6 - y0 = 0
↔mx0 + (4x0 - y0 +6)=0
Để pt thỏa mãn với mọi m thì
x0=0 và 4x0 - y0 +6 = 0
↔x0=0 và y0=6
Vậy đt đã cho luôn đi qua điểm A(0;6)
Key t chụp ở Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath.Còn hình vẽ là t vẽ nha.câu c đang nghĩ~~~
C,Gọi G là giao điểm của AC và BE
=> \(AG\perp BE\) (C là trực tâm tam giác ABE)
Lại có Góc GAB= Góc GBA = 45 độ
=> tam giác ABG vuông cân
Mà A,B cố định
=> G cố định
CMTT câu b => D;F;G thẳng hàng
=> DF luôn đi qua điểm G cố định khi M di động trên AB
Vậy DF luôn đi qua điểm G cố định khi M di động trên AB
Giả sử điểm cố định có tọa độ \(A\left(x_0;y_0\right)\)
\(\Rightarrow2x_0+\left(m-1\right)y_0=1\) với mọi m
\(\Leftrightarrow my_0+\left(2x_0-y_0-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y_0=0\\2x_0-y_0-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=\frac{1}{2}\\y_0=0\end{matrix}\right.\)
Vậy với mọi m thì đường thẳng đã cho luôn đi qua điểm cố định \(A\left(\frac{1}{2};0\right)\)