Cho a,b là các số dương thay đổi thỏa mãn a+b=2.Tính giá trị nhỏ nhất của biểu thức
\(Q=2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
Các dz giúp e vs.......................
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn Q = a2 + b2 + a2 + b2 -6a/b - 6b/a + 9/a2 + 9/b2 = a2 - 6a/b + 9/b2 + b2 - 6b/a + 9/a2 + a2 + b2
= ( a - 3/b )2 + (b - 3/a )2 + a2 + b2 = (a - 3/b )2 + 2(ab - 3) + b2 + (b - 3/a)2 - 2(ab - 3) + a2 = (a - 3/b ) ^2 +2(a - 3/b)b + b^2 + (b - 3/a)^2 -2(b-3/a)a +a^2 = (a -3/b +b )^2 + (b-3/a-a)^2 = (2-3/b)^2 + (b-3/a-a)^2 mik chỉ bik làm tới đây thôi bạn thông cảm mak hình như giá trị nhỏ nhất của Q là 25 tại a=3/2,b=1/2 hoặc a=3/2,b=1/2
ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\frac{1}{2a+b+c}=\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\Rightarrow P\le\frac{1}{16}\left[\left(\frac{1}{a+b}+\frac{1}{a+c}\right)^2+\left(\frac{1}{a+b}+\frac{1}{b+c}\right)^2+\left(\frac{1}{b+c}+\frac{1}{a+c}^2\right)\right]\)
\(\Rightarrow16P\le\frac{2}{\left(a+b\right)^2}+\frac{2}{\left(b+c\right)^2}+\frac{2}{\left(a+c^2\right)}+\frac{2}{\left(a+b\right)\left(b+c\right)}+\frac{2}{\left(a+b\right)\left(a+c\right)}\)\(+\frac{2}{\left(b+c\right)\left(c+a\right)}\)
ap dung \(x^2+y^2+z^2\ge xy+yz+xz\) voi a+b=x, b+c=y, c+a=z
\(16P\le\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\)
tiếp tục áp dụng bdt ban đầu \(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{1}{\left(a+b\right)^2}\le4.16.\left(\frac{1}{a}+\frac{1}{b}\right)^2\)
\(\Rightarrow16P\le\frac{1}{4}.16\left[\left(\frac{1}{a}+\frac{1}{b}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2+\left(\frac{1}{c}+\frac{1}{a}\right)^2\right]\)
=\(\frac{1}{4}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)\)
tiep tuc ap dung bo de thu 2 ta co
\(16P\le\frac{1}{4}.4\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=3\)
\(\Rightarrow p\le\frac{3}{16}\)dau =khi a=b=c=1
Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo.
Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)
Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)
Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b= c = 2
Ta có: \(0< a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2< 3\Rightarrow a,b,c< \sqrt{3}< 2\)
Xét bất đẳng thức phụ: \(2a+\frac{1}{a}\ge\frac{1}{2}a^2+\frac{5}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(a-1\right)^2\left(2-a\right)}{2a}\ge0\)*đúng*
Áp dụng, ta được: \(P\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{5}{2}.3=9\)
Đẳng thức xảy ra khi a = b = c = 1
2) Ta có : \(\left|x-1\right|+\left|1-x\right|=2\) (1)
Xét 3 trường hợp :
1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)
2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)
3. Với x = 1 , phương trình vô nghiệm.
Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)
1) Cách 1:
Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)
Vậy Min A = 9 <=> a = b = c
Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)
cái này bọn mik làm rồi này, cậu chia cả tử và mẫu cho a^2 ;b^2(lần lượt nhé và chỉ 2 phân thức đầu thôi)
sau đó
rồi cậu rút gọn mẫu và đặt b/a=x;c/b=y=> c/a=xy
rồi ... cô si các kiểu
bài này chi đề xuất để biết thêm chi tiết liên hệ với đào khánh chi thông minh hok giỏi nhất đội tuyển toán trường THCS 14-10
Dự đoán \(MinP=\frac{3}{4}\)khi a = b = c
Ta có: \(\frac{c}{4a}=\frac{c^2}{4ca}\ge\frac{c^2}{\left(c+a\right)^2}\)(Theo BĐT AM - GM)
Nên ta cần chứng minh \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{3}{4}\)
Ta có bất đẳng thức quen thuộc sau: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)(BĐT Bunyakovsky dạng phân thức)
Áp dụng, ta được: \(\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c^2}{\left(c+a\right)^2}\ge\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\)
Đến đây, ta cần chỉ ra rằng: \(\frac{1}{3}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)
Ta viết bất đẳng thức cần chứng minh thành \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{1}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{4}\)
Đặt \(x=\frac{b}{a};y=\frac{c}{b};z=\frac{a}{c}\)khi đó xyz = 1 và ta cần chứng minh \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{1}{\left(1+z\right)^2}\ge\frac{3}{4}\)
Lại đặt \(x=\frac{np}{m^2};y=\frac{mp}{n^2};z=\frac{mn}{p^2}\)(m, n, p > 0). Khi đó bất đẳng thức được viết lại thành:
\(\frac{1}{\left(1+\frac{np}{m^2}\right)^2}+\frac{1}{\left(1+\frac{mp}{n^2}\right)^2}+\frac{1}{\left(1+\frac{mn}{p^2}\right)^2}\ge\frac{3}{4}\)\(\Leftrightarrow\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\ge\frac{3}{4}\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức thì được: \(\frac{m^4}{\left(m^2+np\right)^2}+\frac{n^4}{\left(n^2+mp\right)^2}+\frac{p^4}{\left(p^2+mn\right)^2}\)\(\ge\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\)
Và ta cần chứng minh \(\frac{\left(m^2+n^2+p^2\right)^2}{\left(m^2+np\right)^2+\left(n^2+mp\right)^2+\left(p^2+mn\right)^2}\ge\frac{3}{4}\)
\(\Leftrightarrow m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge6mnp\left(m+n+p\right)\)
Ta có: \(m^4+n^4+p^4+5\left(m^2n^2+n^2p^2+p^2m^2\right)\ge\)\(\left(m^2n^2+n^2p^2+p^2m^2\right)+5\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(=6\left(m^2n^2+n^2p^2+p^2m^2\right)\)\(\ge6mnp\left(m+n+p\right)\)
Vậy bất đẳng thức được chứng minh.
Đẳng thức xảy ra khi a = b = c
\(2=a+b\ge2\sqrt{ab}\Rightarrow ab\le1\Rightarrow-ab\ge-1\)
\(Q=2\left(a^2+b^2\right)-\frac{6\left(a^2+b^2\right)}{ab}+\frac{9\left(a^2+b^2\right)}{a^2b^2}\)
\(Q=\left(a^2+b^2\right)\left(\frac{9}{a^2b^2}-\frac{6}{ab}+2\right)\)
\(Q=\left(a^2+b^2\right)\left(\frac{3}{a^2b^2}-\frac{6}{ab}+3+\frac{6}{a^2b^2}-1\right)\)
\(Q=3\left(a^2+b^2\right)\left(\frac{1}{ab}-1\right)^2+\left(a^2+b^2\right)\left(\frac{6}{a^2b^2}-1\right)\)
\(Q\ge\left(a^2+b^2\right)\left(\frac{6}{a^2b^2}-1\right)\ge2ab\left(\frac{6}{a^2b^2}-1\right)=\frac{12}{ab}-2ab\ge\frac{12}{1}-2=10\)
Dấu "=" xảy ra khi \(a=b=1\)
Lưu ý: \(\frac{6}{a^2b^2}\ge6\Rightarrow\frac{6}{a^2b^2}-1>0\) nên dòng 6 vẫn Am-GM được bình thường