Cho số tự nhiên A(i<=A<=10^6).
Tính tổng sau: s:=1-2+3-4+5-6+...+A
Giúp mình với! Xin cảm ơn!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
[ 6/7 + 1/4 ] : [ 19/14 - 1/4 ] < a < 7/3
=> a = 2
Tính :[6/7 +1/4] : [19/14 -1/4] = ? ( tự tính )
? < a < 7/3
? < 2 < 7/3
Mik hứa sẽ tk lại !
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}\)
\(\Rightarrow1-A-\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...-\frac{1}{48}+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{49}{50}-A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)
\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{50}\right)\)
\(\Rightarrow\frac{49}{50}-A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{25}\)
\(\Rightarrow\frac{49}{50}-A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\Rightarrow A=\frac{49}{50}-\left(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\right)\)
Ta có :
\(\frac{1}{26}< \frac{1}{25};\frac{1}{27}< \frac{1}{25};\frac{1}{28}< \frac{1}{25};\frac{1}{29}< \frac{1}{25};\frac{1}{30}< \frac{1}{25};\)
\(\frac{1}{31}< \frac{1}{30};\frac{1}{32}< \frac{1}{30};..;\frac{1}{39}< \frac{1}{30};\frac{1}{40}< \frac{1}{30};\)
\(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};...;\frac{1}{49}< \frac{1}{40};\frac{1}{50}< \frac{1}{40}\)
\(\Rightarrow\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}< 5.\frac{1}{25}+10.\frac{1}{30}+10.\frac{1}{40}\)
\(\Rightarrow\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)
\(\Rightarrow A=\frac{49}{50}-\left(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\right)>\frac{49}{50}-\frac{4}{5}=\frac{9}{50}>\frac{10}{50}=\frac{1}{5}\)
\(\Rightarrow A>\frac{1}{5}\)( đpcm )
Bài 1:
a). A={a;b;c}
b).Tổng các phần tử của tập hợp A là:
a+b+c=abc
Bài 2: (Bài này mình không biết làm)
Bài 3:
B={111;120;210;102;201;300}
uses crt;
var i,n:integer;
s:longint;
begin
clrscr;
write('nhap n:');readln(n);
s:=0;
for i:=1 to n do
if i mod 2=1 then s:=s+i
else s:=s-i;
writeln('s= ',s);
readln;
end.
Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)
Ta có: \(a^2\) = \(\left(5k+4\right)^2\)
= 25\(k^2\) + 40k + 16
= 25\(k^2\) + 40k + 15 + 1
= 5(5\(k^2\)+ 8k +3) +1
Ta có: 5 ⋮ 5 nên 5(5\(k^2\) + 8k + 3) ⋮ 5
Vậy \(a^2\) = (5k+4)25k+42 chia cho 5 dư 1. (đpcm)
uses crt;
var a,i,s:longint;
begin
clrscr;
write('a='); readln(a);
s:=0;
for i:=1 to a do
begin
if i mod 2=1 then s:=s+i
else s:=s-i;
end;
writeln('Ket qua la: ',s);
readln;
end.