K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

a, có O là TĐ  của HE 

I là trung điểm EC 

OE/EH= EI/EC=1/2

⇒OI song² HC 

MÀ HC  vuông góc AH 

⇒ OI vuông góc AH 
b, xét ΔAHI

có DI vuông góc AH ⇒ OI là đường cao 

     HE vuông góc AI ⇒ HE là đường cao 

⇒ O là trực tâm Δ AHI

⇒ AO là đường cao Δ AHI

⇒ AO vuông góc HI (1)

Xét Δ ABC cân tại A 

có AH là đường cao 

⇒ AH là trung tuyến 

H là TĐ của BC 

⇒ HC/BC = 1/2

có I là TĐ EC ⇒ IC/EC =  1/2 

⇒ HC / BC = IC/EC ⇒HI song² BE (2)

Từ (1), (2) ⇒ AO vuông góc với BE

undefined

T.I.C.K CHO MÌNH VỚI NHÉ. MÌNH ĐẦU

21 tháng 2 2020

A B C H E I O

a) Xét △EHC có : IE = IC

                            OE = OH

\(\Rightarrow\)OI là đương trung bình của △EHC

\(\Rightarrow\)OI // HC

Mà AH ⊥ HC

\(\Rightarrow\)OI ⊥ AH (ĐPCM)

b) Nối H với I , kéo dài OI ⊥ AH

Xét  △AHI có : HE ⊥ AI tại E

                        IK ⊥ AH tại K 

                        HE ∩ IK tại O 

 \(\Rightarrow\) O là trực tâm của tam giác AHI 

 \(\Rightarrow\)Đường AO là đường cao thứ 3 của tam giác 

 \(\Rightarrow\) AO ⊥ HI (1)

Vì  △ABC cân tại A có AH là đường cao

\(\Rightarrow\)AH đồng thời là đường trung tuyến

\(\Rightarrow\)HB = HC

Xét △BEC có : IE = IC

                        HB = HC

\(\Rightarrow\)HI là đường trung bình của △BEC

\(\Rightarrow\)HI // BE (2)

Từ (1) và (2) suy ra : AO ⊥ BE (ĐPCM)

9 tháng 6 2016

a, xet tam giac EHC . co 

+ O va I la trung diem  HE  va EC => OI la duong trung  binh tam giac EHC

=> OI//HC

ma HC  va AH

=> OI  va AH [dpcm]

b, xet tam giac  ABC ta co :

AH la duong cao dong thoi la trung tuyen ung voi day  BC nen H  la trung dim BC

xet tam giac BEC . ta co

 H va I la trung diem  BC va CE  => HI la trung binh tam giac BEC

xet tam gic AIH  co : OI va  AH , HE va  IO cat nhau cat nhau o O nen O  la truc tam cua tam giac  AHI

tu do [1] va [ 2]  ta co AO va BE

9 tháng 6 2016

mk học lớp 7, chưa học đg trung bình

21 tháng 7 2018

a) Ta có: EH = EM (gt); AB ⊥ HE (gt).

⇒ AB là đường trực của MH. (đpcm1)

CMTT, ta được: AC là đường trực của NH. (đpcm2)

b) Ta có: AB là đường trực của MH. (cmt)

⇒ AM = AH. (1)

CMTT, ta được: AN = AH. (2)

Từ (1), (2) ⇒ AM = AN.

△AMN có: AM = AN. (cmt)

⇒ △AMN cân tại A. (đpcm)

c) △HMN có: EH = EM (gt); FH = FN (gt).

⇒ EF là đường trung bình của △HMN.

⇒ EF // MN. (đpcm)

d) △AMN cân ở A. (cmt)

⇒ Đường trung truyến AI (IM = IN) cũng là đường cao.

⇒ AI ⊥ MN.

Mà EF // MN. ⇒ AI ⊥EF. (đpcm)

21 tháng 7 2018

Đường trung bình của tam giác, hình thangĐường trung bình của tam giác, hình thang