K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P=\dfrac{-1+2\sqrt{x}-x+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}:\dfrac{2x+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:

\(P=\dfrac{\sqrt{5}-1}{\sqrt{5}-2}=3+\sqrt{5}\)

 

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

2 tháng 9 2019

\(2,\)

\(a,\sqrt{x^2-4x+3}=3\)

\(\Rightarrow x^2-4x+3=9\)

\(\Rightarrow x^2-4x-6=0\)

\(\Rightarrow\left(x-2\right)^2=10\)

\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{10}\\x-2=-\sqrt{10}\end{cases}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}}\)

2 tháng 9 2019

\(a,x\ge0;x\ne1;B,x\ge0;x\ne9;C,x>0;x\ne4\)

\(d,x\ge0;x\ne25\)

15 tháng 8 2017

bài 2 là bài 21 trong nâng cao phát triển toán 9, chắc bạn có chứ

16 tháng 8 2017

Bài 1: Ta có:

\(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}=5+\sqrt{13+x}\)

\(\Rightarrow x^2-5=\sqrt{13+x}\Rightarrow x^4-10x^2+25=13+x\Leftrightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Pt này có 1 nghiệm x = 3 và 3 nghiệm nhỏ hơn 2.

Vì \(x>\sqrt{4}=2\)

Vậy x = 3.

DD
20 tháng 7 2021

\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)(ĐK: \(x\ge0,x\ne1\)

\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(A=\frac{5}{\sqrt{x}}\)

\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{5}{\sqrt{x}}\)

\(\Rightarrow x=5\left(x+\sqrt{x}+1\right)\)

\(\Leftrightarrow4x+5\sqrt{x}+1=0\)(vô nghiệm do \(x\ge0\)

\(A-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)(vì \(x\ne1\))

Do đó \(A< \frac{1}{3}\).