\(\sqrt{x-\frac{1}{x}}+\frac{4}{x}=x+\sqrt{2x-\frac{5}{x}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 8 2020

5/

Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=a\ge0\\\sqrt{\frac{6}{x}-2x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=\frac{3}{x}\)

Pt trở thành:

\(a-1=\frac{a^2+b^2}{2}-b\)

\(\Leftrightarrow a^2+b^2-2a-2b+2=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=1\\\sqrt{\frac{6}{x}-2x}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-x-3=0\\2x^2+x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)

NV
6 tháng 8 2020

4/

ĐKXĐ: \(x\ge\frac{1}{5}\)

\(\Leftrightarrow\frac{4x-3}{\sqrt{5x-1}+\sqrt{x+2}}=\frac{4x-3}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\Rightarrow x=\frac{3}{4}\\\sqrt{5x-1}+\sqrt{x+2}=5\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{5x-1}-3+\sqrt{x+2}-2=0\)

\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}+\frac{x-2}{\sqrt{x+2}+2}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}+\frac{1}{\sqrt{x+2}+2}\right)=0\)

\(\Leftrightarrow x=2\)

5 tháng 9 2019

https://olm.vn/thanhvien/trungkienhy79

https://olm.vn/thanhvien/nhu140826

Vô trang cá nhân của e ẽ thấy tình yêu TRONG SÁNG của 2 anh chị trên

5 tháng 9 2019

https://olm.vn/thanhvien/trungkienhy79

https://olm.vn/thanhvien/nhu140826

Vô trang cá nhân của e ẽ thấy tình yêu TRONG SÁNG của 2 anh chị trên

24 tháng 9 2018

a/ \(B=\frac{1+x}{1+\sqrt{x}+x}\)

b/ Giải phương trình bậc 2 thì dễ rồi ha

c/ \(\frac{1+x}{1+\sqrt{x}+x}>\frac{2}{3}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)đung vì x khac 1

24 tháng 9 2018

Phương trình bậc hai là\(x-\sqrt{6x}+1=0\) thì giải làm sao bạn ơi??

7 tháng 10 2019

B=\(\frac{x\sqrt{x}-1}{x-1}\)(x>0,x≠1)

=\(\frac{\sqrt{x^3}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)