\(\frac{-5}{\sqrt{x-2}}\) 

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

25 tháng 1 2017

\(P=\frac{x-2}{x+1}=\frac{\cdot\left(x+1\right)-3}{x+1}=\frac{x+1}{x+1}-\frac{3}{x+1}=1-\frac{3}{x+1}\)

Để \(P=1-\frac{3}{x+1}\) là số nguyên <=> \(\frac{3}{x+1}\) là số nguyên

=> x + 1 thuộc ước của 3 là - 3; - 1; 1 ; 3

=> x + 1 = { - 3; - 1; 1 ; 3 }

=> x = { - 4 ; - 2 ; 0 ; 2 }

25 tháng 1 2017
  • Cảm ơn bạn nha!
14 tháng 10 2017

1.

Theo bài ra ta có:

\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10

Ta có:

\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra:

x = 2 . 8 = 16

y = 2 . 12 = 24

z = 2 . 15 = 30

2/

Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

Ta có :x = 2k ; y = 5k

=>x . y = 2k . 5k = 10k2 = 10 => k= 1 => k = ±1

Thay k = 1 ta có : x = 2 . 1 = 2     ;      y = 5 . 1 = 5

Thay k = -1 ta có : x = 2 . (-1) = -2    ;    y = 5 . (-1) = -5

Vậy x = ±2   ;  y = ±5

3/

Giải:

Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .

Theo bài ra ta có:

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)

Suy ra :

a = 35 . 9 = 315

b = 35 . 8 = 280

c = 35 . 7 = 245

d = 35 . 6 = 210

Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .

14 tháng 10 2018

1) \(ℕ\subsetℤ\subsetℚ\)

\(\frac{-3}{5}\)có thuộc Z 

2) \(\frac{x-3}{15}\)\(\frac{-7}{5}\)

(x-3).5 = 15.(-7)

(x-3).5 = -105

x-3 = -105:5

x-3 = -21

x = -21+3 

x= -18 

 CHÚC BẠN HỌC TỐT

2 tháng 8 2017

2m - 2n = 256 = 28 \(\Rightarrow\)2n . ( 2m-n - 1 ) = 28

dễ thấy m \(\ne\)n , ta xét 2 trường hợp :

a) nếu m - n = 1 thì từ ( 1 ) ta có : 2n . ( 2 - 1 ) = 28 . suy ra : n = 8, m = 9

b) nếu m - n \(\ge\)2 thì 2m-n - 1 là 1 số lẻ lớn hơn 1 nên vế trái của ( 1 ) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. còn vế phải của ( 1 ) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn

Vậy n = 8 , m = 9 là đáp số bài trên

2 tháng 8 2017

đặt A = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

3A = \(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

3A - A = 2A = \(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

biểu thức trong dấu ngoặc nhỏ hơn \(\frac{1}{2}\)( tự chứng minh ) nên 2A < 1 + \(\frac{1}{2}\)

\(\Rightarrow A< \frac{3}{4}\)