Giải hệ phương trình sau \(\left\{{}\begin{matrix}\frac{4x}{x+1}+\frac{x}{y}=4\\\frac{2}{x+1}+\frac{4}{x}=\frac{3}{y}\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
ĐKXĐ:...
a) \(\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x+8}{y+4}=\frac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2y}{3}\\\frac{\frac{2y}{3}+8}{y+4}=\frac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{-12}{19}\\x=\frac{-8}{19}\end{matrix}\right.\)
Vậy...
b) \(\left\{{}\begin{matrix}0,75x-3,2y=10\\x\sqrt{3}-y\sqrt{2}=4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3,2y+10}{0,75}\\\frac{\left(3,2y+10\right)\sqrt{3}}{0,75}-y\sqrt{2}=4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{\frac{16\sqrt{3}}{5}y+10\sqrt{3}-\frac{3\sqrt{2}}{4}y}{0,75}=4\sqrt{3}\\x=\frac{3,2y+10}{0,75}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(\frac{16\sqrt{3}}{5}-\frac{3\sqrt{2}}{4}\right)+10\sqrt{3}=3\sqrt{3}\\x=\frac{3,2y+10}{0,75}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{-140\sqrt{3}}{64\sqrt{3}-15\sqrt{2}}\\x=\frac{\frac{-448\sqrt{3}}{64\sqrt{3}-15\sqrt{2}}+10}{0,75}\end{matrix}\right.\)
Nghiệm đẹp lắm.
c) \(\left\{{}\begin{matrix}\frac{2x+3}{y-1}=\frac{4x+1}{2y+1}\\\frac{x+2}{y-1}=\frac{x-4}{y+2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3\right)\left(2y+1\right)-\left(y-1\right)\left(4x+1\right)=0\\\left(x+2\right)\left(y+2\right)-\left(y-1\right)\left(x-4\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x+5y+4=0\\3x+6y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2y\\-12y+5y+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{4}{7}\\x=\frac{-8}{7}\end{matrix}\right.\)
Vậy...
a/ \(\Leftrightarrow\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\\frac{2x}{3}+\frac{x}{4}-\frac{y}{6}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\\frac{11}{12}x-\frac{y}{6}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\11x-2y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{28}{13}\\y=\frac{76}{13}\end{matrix}\right.\)
1, \(\left\{{}\begin{matrix}\left(x+2\right)\left(y-2\right)=xy\left(1\right)\\\left(x+4\right)\left(y-3\right)=xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}xy-2x+2y-4=xy\\xy-3x+4y-12=xy\end{matrix}\right.\)
\(\Rightarrow x-2y+8=0\Leftrightarrow x=2y-8\) thay vào \(\left(1\right)\) ta được
\(\left(2y-6\right)\left(y-2\right)=\left(2y-8\right)y\)\(\Leftrightarrow2y^2-4y-6y+12=2y^2-8y\Leftrightarrow2y=12\Leftrightarrow y=6\Rightarrow x=4\)
Vậy hệ phương trình có nghiệm là \(\left(x,y\right)=\left(4,6\right)\)
Câu 1 nhân 2 tích đó vào, rồi ra tích x.y xong rút gọn x.y ra lại hệ pt quen thuộc.
Câu 2 đặt ẩn, \(\frac{1}{x-3}=a\) và \(\frac{1}{y}=b\)
lại ra hpt quen thuộc, giải a ,b xong thay vào tìm x với y
a, ĐKXĐ : \(x,y\ne0\)
- Ta có : \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y}=1\\\frac{3}{x}+\frac{4}{y}=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{3}{x}-\frac{3}{y}=3\\\frac{3}{x}+\frac{4}{y}=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y}=1\\-\frac{7}{y}=-2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{\frac{2}{7}}=1\\y=\frac{2}{7}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{9}{7}\\y=\frac{2}{7}\end{matrix}\right.\)
Vậy phương trình có duy nhất 1 nghiệm là \(S=\left\{\frac{9}{7};\frac{2}{7}\right\}\)
a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)
Vậy..............................................................................
b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)
Vậy...................................................................................
c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)
\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)
Vậy hệ pt vô nghiệm
d) Nhân 3 pt đầu rồi thu gọn
Bài 1:
Đặt $\sqrt[4]{y^3-1}=a; \sqrt{x}=b$ $(a,b\geq 0$)
Khi đó hệ PT trở thành:
\(\left\{\begin{matrix} a+b=3\\ b^4+a^4+1=82\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^4+b^4=81\end{matrix}\right.\)
Có: \(a^4+b^4=81\)
\(\Leftrightarrow (a^2+b^2)^2-2a^2b^2=81\)
\(\Leftrightarrow [(a+b)^2-2ab]^2-2a^2b^2=81\)
\(\Leftrightarrow (9-2ab)^2-2a^2b^2=81\)
\(\Leftrightarrow 2a^2b^2-36ab=0\)
\(\Leftrightarrow ab(ab-18)=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=18\end{matrix}\right.\)
Nếu $ab=0$. Kết hợp với $a+b=3$ suy ra $(a,b)=(3,0); (0,3)$
$\Rightarrow (x,y)=(0, \sqrt[4]{82}); (9, 1)$
Nếu $ab=18$. Kết hợp với $a+b=3$ và định lý Vi-et đảo suy ra $a,b$ là nghiệm của pt: $X^2-3X+18=0$
Dễ thấy pt này vô nghiệm nên loại
Vậy......
Bài 2:
ĐK: ..........
Đặt $\sqrt{x+\frac{1}{y}}=a; \sqrt{x+y-3}=b$ $(a,b\geq 0$)
HPT \(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2+3=8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ a^2+b^2=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=3\\ (a+b)^2-2ab=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=3\\ ab=2\end{matrix}\right.\)
Áp dụng định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-3X+2=0$
$\Rightarrow (a,b)=(2,1); (1,2)$
Nếu $(a,b)=(2,1)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y-3=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=4\\ x+y=4\end{matrix}\right.\Rightarrow y=\frac{1}{y}\Rightarrow y=\pm 1\)
$y=1\rightarrow x=3$
$y=-1\rightarrow y=5$
Nếu $(a,b)=(1,2)$
\(\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y-3=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+\frac{1}{y}=1\\ x+y=7\end{matrix}\right.\Rightarrow y-\frac{1}{y}=6\)
\(\Rightarrow y^2-6y-1=0\Rightarrow y=3\pm \sqrt{10}\)
Nếu $y=3+\sqrt{10}\rightarrow x=4-\sqrt{10}$
Nếu $y=3-\sqrt{10}\rightarrow x=4+\sqrt{10}$
Vậy...........
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x+1}+\frac{1}{y}=\frac{4}{x}\\\frac{2}{x+1}+\frac{4}{x}=\frac{3}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{12}{x+1}+\frac{3}{y}=\frac{12}{x}\\\frac{2}{x+1}+\frac{4}{x}=\frac{3}{y}\end{matrix}\right.\)
\(\Rightarrow\frac{14}{x+1}+\frac{4}{x}=\frac{12}{x}\Leftrightarrow\frac{14}{x+1}=\frac{8}{x}\)
Tới đây chắc bạn giải tiếp được