Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
a/ \(\Leftrightarrow\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\\frac{2x}{3}+\frac{x}{4}-\frac{y}{6}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\\frac{11}{12}x-\frac{y}{6}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\11x-2y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{28}{13}\\y=\frac{76}{13}\end{matrix}\right.\)
e) Sửa đề: \(\left\{{}\begin{matrix}x\left(x^2-y^2\right)+x^2=2\sqrt{\left(x-y^2\right)^3}\\76x^2-20y^2+2=\sqrt[3]{4x\left(8x+1\right)}\end{matrix}\right.\)
PT(1) \(\Leftrightarrow x^3+x\left(x-y^2\right)=\sqrt{\left(x-y^2\right)^3}\)
Đặt \(\sqrt{x-y^2}=a.\text{Thay vào, ta có: }x^3+xa^2-2a^3=0\)
Làm tiếp như ở Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học toán với OnlineMath
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira, Nguyễn Thị Ngọc Thơ, Nguyễn Lê Phước Thịnh, Quân Tạ Minh, An Võ (leo), @tth_new
e nhiều bài quá giải k kịp mn giúp e vs ạ!cần gấp lắm ạ
thanks nhiều!
a/ Bạn tự giải
b/ ĐKXĐ:...
Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)
Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)
\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)
\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)
Chắc bạn ghi sai đề, nghiệm quá xấu
3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)
4/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)
\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)
\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)
\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)
Vì \(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)
Làm nốt nha
a)
HPT \(\Leftrightarrow \left\{\begin{matrix} 4x+8y=0(1)\\ 4x+2y=-3(2)\end{matrix}\right.\)
Lấy $(1)-(2)$ ta thu được: $8y-2y=3$
$\Leftrightarrow 6y=3\Leftrightarrow y=\frac{1}{2}$
Khi đó: $x=\frac{-4y}{2}=-2y=-1$
Vậy..........
b)
HPT \(\Leftrightarrow \left\{\begin{matrix} 2x-y=-4(1)\\ 2x+4y=-6(2)\end{matrix}\right.\)
Lấy $(1)-(2)$ suy ra: $-y-4y=-4-(-6)$
$\Leftrightarrow -5y=2\Rightarrow y=\frac{-2}{5}$
$\Rightarrow x=-3-2y=\frac{-11}{5}$
c)
HPT \(\Leftrightarrow \left\{\begin{matrix} xy+2x-15y-30=xy\\ xy-x+15y-15=xy\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x-15y=30\\ -x+15y=15\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2x-15y=30(1)\\ -2x+30y=30(2)\end{matrix}\right.\)
Lấy $(1)+(2)$ suy ra $-15y+30y=60$
$\Leftrightarrow 15y=60\Leftrightarrow y=4$
$\Rightarrow x=15y-15=45$
Vậy.......
d)
HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{2}{x}+\frac{2}{y}=10(1)\\ \frac{2}{x}+\frac{5}{y}=7(2)\end{matrix}\right.\)
Lấy \((2)-(1)\Rightarrow \frac{3}{y}=7-10=-3\Rightarrow y=-1\)
\(\Rightarrow \frac{1}{x}=5-\frac{1}{y}=5-\frac{1}{-1}=6\Rightarrow x=\frac{1}{6}\)
Vậy........
a, ĐKXĐ : \(x,y\ne0\)
- Ta có : \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y}=1\\\frac{3}{x}+\frac{4}{y}=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{3}{x}-\frac{3}{y}=3\\\frac{3}{x}+\frac{4}{y}=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{y}=1\\-\frac{7}{y}=-2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}\frac{1}{x}-\frac{1}{\frac{2}{7}}=1\\y=\frac{2}{7}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{9}{7}\\y=\frac{2}{7}\end{matrix}\right.\)
Vậy phương trình có duy nhất 1 nghiệm là \(S=\left\{\frac{9}{7};\frac{2}{7}\right\}\)