Cho △ABC có độ dài 3 cạnh là: BC=a, CA=b, AB=c và chu vi tam giác là 2P. Chứng minh:\(\frac{P}{P-a}+\frac{P}{P-b}+\frac{P}{P-c}\ge9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cfrac{P}{P-a}=\cfrac{2P}{2P-2a}=\cfrac{2P}{a+b+b-2a}=\cfrac{2P}{-a+b+c}\)
Chứng minh tương tự => \(\cfrac{P}{P-b}=\cfrac{2P}{a-b+c} \); \(\cfrac{P}{P-c}=\cfrac{2P}{a+b-c}\)
=>VT=\(\cfrac{2P}{-a+b+c}+\cfrac{2P}{a-b+c}+\cfrac{2P}{a+b-c} \geq 2P\cfrac{(1+1+1)^2}{a+b +c}=9\)(Áp dụng bđt \(\cfrac{a^2}{x}+\cfrac{b^2}{y}+\cfrac{c^c}{z}\geq\cfrac{(a+b+c)^2}{x+y+z}\))
Trước khi giải mình đã chụp lại ảnh bài toán và phát hiện bạn đổi đề. Bạn không được làm như thế, bạn đã khiển các bạn khác tưởng mình sai đề đó huhu
Đặt a = b = c . Từ đề bài:
\(\Rightarrow\frac{1}{p-a}=\frac{1}{p-\left(b+c\right)}\)
\(\Rightarrow\frac{1}{p-b}=\frac{1}{p-\left(c+a\right)}\)
\(\Rightarrow\frac{1}{p-c}=\frac{1}{p-\left(a+b\right)}\)
\(\Leftrightarrow\frac{1}{p-\left(b+c\right)}+\frac{1}{p-\left(c+a\right)}+\frac{1}{p-\left(a+b\right)}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{p-a^2}+\frac{1}{p-b^2}+\frac{1}{p-c^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì a = b =c nên (b +c) ta đổi thành a2, các cái còn lại tương tự)
Suy ra \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)
Vậy đẳng thức xảy ra khi và chỉ khi a = b =c
P/s: Mình không chắc! Sai thì thôi nha! Đừng chọn sai nhé
\(\hept{\begin{cases}\frac{ab}{c}+\frac{bc}{a}\ge2b\\\frac{bc}{a}+\frac{ca}{b}\ge2c\\\frac{ca}{b}+\frac{ab}{c}\ge2a\end{cases}}\) :)))
Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)
Đặt \(x=b+c-a>0\)
\(y=a+c-b>0\)
\(z=a+b-c>0\)
\(\Rightarrow a=\frac{"y+z"}{2}\)
\(\Rightarrow b=\frac{"x+z"}{2}\)
\(\Rightarrow c=\frac{"x+y"}{2}\)
\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)
\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)
\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)
Áp dụng công thức bdt Cauchy cho 2 số :
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng 3 bdt trên, suy ra :
\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"
P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé
(p-a)(p-b)(p-c)=(\(\left(\frac{b+c-a}{2}\right)\left(\frac{a+c-b}{2}\right)\left(\frac{a+b-c}{2}\right)\)
Mà a,b,c là ba canh tam giác nên \(b+c-a\le a\)
Tương tự suy ra
\(VT=p\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{9p}{3p-\left(a+b+c\right)}\)
\(VT\ge\frac{9p}{3p-2p}=9\)
Dấu "=" xảy ra khi \(a=b=c\) hay tam giác đều