Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K M
Ta có : \(Sin\frac{A}{2}=Sin\widehat{BAM}=Sin\widehat{CAM}=\frac{BH}{AB}=\frac{CK}{CA}\)
\(\Rightarrow sin\frac{A}{2}=\frac{BH}{b}=\frac{CK}{c}\Rightarrow sin^2\frac{A}{2}=\frac{BH.CK}{bc}\)
Lại có : \(BH\le BM;CK\le CM\)
\(\Rightarrow sin^2\frac{A}{2}\le\frac{BM.CM}{bc}\le\frac{\frac{\left(BM+CM\right)^2}{4}}{bc}=\frac{\frac{BC^2}{4}}{bc}=\frac{a^2}{4bc}\)
\(\Rightarrow sin\frac{A}{2}\le\frac{a}{2\sqrt{bc}}\) (đpcm)
set \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\)\(\Rightarrow x+y+z=3\)
\(VT=\sum\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)}{4x}}=\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}.\left(\sum\dfrac{1}{\sqrt{4x\left(y+z\right)}}\right)\)
Áp dụng BĐT AM-GM:
\(\dfrac{1}{\sqrt{4x\left(y+z\right)}}+\dfrac{1}{\sqrt{4y\left(x+z\right)}}+\dfrac{1}{\sqrt{4z\left(x+y\right)}}\ge\dfrac{9}{2\left(\sqrt{xy+xz}+\sqrt{yz+yx}+\sqrt{xz+zy}\right)}\)
Áp dụng BĐT bunyakovsky:
\(\sum\sqrt{xy+yz}\le\sqrt{6\left(xy+yz+xz\right)}\)
\(\Rightarrow\sum\dfrac{1}{2\sqrt{x\left(y+z\right)}}\ge\dfrac{9}{2\sqrt{6\left(xy+yz+xz\right)}}\)
Mà \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)=\dfrac{8}{3}\left(xy+yz+xz\right)\)(*)
\(\Rightarrow VT\ge\sqrt{\dfrac{8}{3}\left(xy+yz+xz\right)}.\dfrac{9}{2\sqrt{6\left(xy+yz+xz\right)}}=3\)
Dấu = xảy ra khi x=y=z hay a=b=c=1
(*) Prove BĐT \(\left(m+n\right)\left(n+p\right)\left(m+p\right)\ge\dfrac{8}{9}\left(m+n+p\right)\left(mn+np+pm\right)\)
khai triển ,để ý rằng \(\left(m+n\right)\left(n+p\right)\left(p+m\right)=\left(m+n+p\right)\left(mn+np+pm\right)-mnp\)
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2.\left(a+b\right)=\frac{1}{4}\left(a+b\right)^3\)
\(\Rightarrow\frac{c}{\sqrt[3]{a^3+b^3}}\le\sqrt[3]{4}.\frac{c}{a+b}\)
Tương tự rồi cộng theo vế 3 BĐT trên ta có đpcm
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)
Đặt \(x=b+c-a>0\)
\(y=a+c-b>0\)
\(z=a+b-c>0\)
\(\Rightarrow a=\frac{"y+z"}{2}\)
\(\Rightarrow b=\frac{"x+z"}{2}\)
\(\Rightarrow c=\frac{"x+y"}{2}\)
\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)
\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)
\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)
Áp dụng công thức bdt Cauchy cho 2 số :
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng 3 bdt trên, suy ra :
\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"
P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé