K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 4 2020

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\) ; \(x\ne-5\)

- Với \(x=\pm3\) thỏa mãn

- Với \(x\ne\pm3\)

\(\Leftrightarrow\frac{3x-1}{x+5}\le x\Leftrightarrow x-\frac{3x-1}{x+5}\ge0\)

\(\Leftrightarrow\frac{x^2+2x+1}{x+5}\ge0\Leftrightarrow\frac{\left(x+1\right)^2}{x+5}\ge0\)

\(\Rightarrow x>-5\)

Vậy nghiệm của BPT trên \(\left[-5;5\right]\) là: \(\left[{}\begin{matrix}-5< x\le-3\\3\le x\le5\end{matrix}\right.\)

Tính tổng nghiệm hay tổng nghiệm nguyên?

Tổng nghiệm là \(\sum x=5\)

29 tháng 4 2020

tổng nghiệm nguyên b

3 tháng 5 2018

Đáp án A

Ta có sin 2 x + 9 π 2 = sin 2 x + π 2 + 4 π = cos 2 x và cos x − 15 π 2 = − sin x

Khi đó, phương trình (I)  ⇔ cos 2 x + 3 sin x = 1 + 2 sin x ⇔ 1 − 2 sin 2 x = 1 − sin x ⇔ sin x = 0 sin x = 1 2

Kết hợp với  x ∈ 0 ; 2 π   , ta được x = 0 ; π ; 2 π ; π 6 ; 5 π 6  là các nghiệm của phương trình

31 tháng 12 2017

Đáp án là B


1 tháng 4 2018

Đáp án là A

6 tháng 3 2019

Đáp án B

Điều kiện tan x > 0 

PT ⇔ e 2 2 sin x - cos x = sin x cos x ⇔ sin x e 2 2 sin x = cos x e 2 2 cos x  

Xét hàm số y = f t = t e 2 2 t t - 1 ; 1  

Khi đó f ' t = e 2 2 t 1 - t 2 2 e 2 t > 0   ∀ t - 1 ; 1  do đó hàm số f(t) đồng biến trên [-1;1] 

Ta có f sin x = f cos x ⇔ cos x ⇔ tan x = 1 ⇔ x = π 4 + k π  

Với x ∈ 0 ; 50 π ⇒ k = 0 ; 1 ; 2 ; . . . ; 49 ⇒  tổng nghiệm của pt là

50 π 4 + 1 + 2 + . . . + 49 π = 2475 2 π

16 tháng 7 2017

Chọn B.

Điều kiện : 

Ta có

Xét hàm số   có   với mọi 

Suy ra f(t) là hàm số nghịch biến trên khoảng (-1; 0) (0; 1)

Mà 

Lại có  nên 

Vậy tổng cần tính là 

25 tháng 11 2018

22 tháng 3 2017

4 tháng 11 2019

Phương trình đã cho tương đương với 

2 1 - cos x - 3 cos 2 x = 1 + 1 + cos 2 x - 3 π 2 ⇔ - 2 cos x = 3 cos 2 x - sin 2 x ⇔ - cos x = 3 2 cos 2 x - 1 2 sin 2 x ⇔ cos π - x = cos 2 x + π 6 ⇔ x = 5 π 18 + k 2 π 3 x = - 7 π 6 + k 2 π

Do x ∈ 0 ; π  nên x ∈ 5 π 18 ; 17 π 18 ; 5 π 6 .

Vậy tổng các nghiệm là  37 π 18

Đáp án A

24 tháng 11 2019

Chọn A

21 tháng 4 2017

Đáp án B

Điều kiện: tan x > 0

Xét hàm số  y = f t = t e 2 2 t   t ∈ - 1 ; 1

Khi đó  f ' t = e 2 2 1 - t 2 2 e 2 t > 0   ∀ t ∈ - 1 ; 1

do đó hàm số f(t) đồng biến trên [–1;1]