Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương trình sin x cos x + 1 = 0 ⇔ cos x + 1 ≠ 0 sin x = 0 ⇔ cos x ≠ - 1 1 - cos 2 x = 0 ⇔ cos x = 1 ⇔ x = k 2 π k ∈ ℤ .
Mà x ∈ 0 ; 2017 π → x = k 2 π ∈ 0 ; 2017 π ⇔ 0 ≤ k ≤ 2017 2 suy ra k = 0 ; 1 ; 2 . . . ; 1008 . Khi đó S = 2 π + 4 π + . . . + 2016 π . Dễ thấy S là tổng của CSC với u 1 = d = 2 π u 2 = 2016 π ⇒ n = 1008 .
Suy ra S = n u 1 + u n 2 = 1008 . 2 π + 2016 π 2 = 1008 . 1009 π = 1017072 π .
a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)
Ta có : |x(x2 - 3)| = x
<=> x(x2 - 3) = x <=> x2 - 3 = x : x = 1 <=> x2 = 4
Vì x \(\ge\) 0 nên x = 2
\(\left(C_1\right)\) có dạng \(y=x^3-3x\)
Gọi điểm A(a;2) là điểm kẻ đc 3 tiếp tuyến đến C do đề bài yêu cầu tìm điểm thuộc đường thẳng y=2
ta tính \(y'=3x^2-3\)
gọi \(B\left(x_0;y_0\right)\) là tọa độ tiếp điểm
phương trình tiếp tuyến tại điểm B có dạng
\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0\)
suy ra ta có \(y=\left(3x^2_0-3\right)\left(x-x_0\right)+x_0^3-3x_0\)
do tiếp tuyến đi qua điểm A suy ra tọa độ của A thỏa mãn pt tiếp tuyến ta có
\(2=\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0\Leftrightarrow-\left(3x^2_0-3\right)\left(a-x_0\right)+x_0^3-3x_0-2=0\Leftrightarrow-3\left(x_0-1\right)\left(1+x_0\right)\left(a-x_0\right)+\left(1+x_0\right)^2\left(x_0-2\right)=0\)(*)
từ pt * suy ra đc 1 nghiệm \(x_0+1=0\Rightarrow x_0=-1\) hoặc\(-3\left(x_0-1\right)\left(a-x_0\right)+\left(1+x_0\right)\left(x_0-2\right)=0\)(**)
để qua A kẻ đc 3 tiếp tuyến thì pt (*) có 3 nghiệm phân biệt
suy ra pt (**) có 2 nghiệm phân biệt khác -1
từ đó ta suy ra đc a để pt có 2 nghiệm phân biệt khác -1
suy ra đc tập hợ điểm A để thỏa mãn đk bài ra
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
Đáp án A
Ta có sin 2 x + 9 π 2 = sin 2 x + π 2 + 4 π = cos 2 x và cos x − 15 π 2 = − sin x
Khi đó, phương trình (I) ⇔ cos 2 x + 3 sin x = 1 + 2 sin x ⇔ 1 − 2 sin 2 x = 1 − sin x ⇔ sin x = 0 sin x = 1 2
Kết hợp với x ∈ 0 ; 2 π , ta được x = 0 ; π ; 2 π ; π 6 ; 5 π 6 là các nghiệm của phương trình