(x^2+x-5)(x^2+x+4)=-18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2006 x [43 x 10 - 2 x 43 x 5] +100
=2006x0+100
=0+100
=100
64x4+18x4+9x8
=256+72+72
=400
44x5+18x10+20x5
=220+180+100
=500
3x4+4x6+9x2+18
=12+24+18+18
=72
2x5+5x7+9x3
=10+35+27
=72
15:5+27:5+8:5
=[15+27+8]:5
=10
99:5-26:5-14:5
=[99-26-14]:5
=11.8
Câu cuối sai đề nha mà nếu đề như vậy thì đó là toán lớp 6
Cảm ơn bạn I LOVE YOU rất nhiều mình đang vội ,cảm ơn bạn nhé!!!
5 x 6 = 30 2 x 6 = 12 3 x 6 = 18 4 x 6 = 24
6 x 5 = 30 6 x 2 = 12 6 x 3 = 18 6 x 4 = 24
a, 3.(2\(x\) + 4) + 198 = (-3)2.10
3.(2\(x\) + 4) + 198 = 90
3.(2\(x\) + 4) = 90 - 198
3.(2\(x\) + 4) = - 108
2\(x\) + 4 = -108 : 3
2\(x\) + 4 = -36
2\(x\) = - 36 - 4
2\(x\) = - 40
\(x\) = -40 : 2
\(x\) = - 20
b, 2.(\(x\) + 7) - 6 = 18
2.(\(x\) + 7) = 18 + 6
2.(\(x\) + 7) =24
\(x\) + 7 = 24 : 2
\(x\) + 7 = 12
\(x\) = 12 - 7
\(x\) = 5
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
a) Ta có: \(\dfrac{x-2}{15}+\dfrac{x-3}{14}+\dfrac{x-4}{13}+\dfrac{x-5}{12}=4\)
\(\Leftrightarrow\dfrac{x-2}{15}-1+\dfrac{x-3}{14}-1+\dfrac{x-4}{13}-1+\dfrac{x-5}{12}-1=0\)
\(\Leftrightarrow\dfrac{x-17}{15}+\dfrac{x-17}{14}+\dfrac{x-17}{13}+\dfrac{x-17}{12}=0\)
\(\Leftrightarrow\left(x-17\right)\left(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)
mà \(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}>0\)
nên x-17=0
hay x=17
Vậy: x=17
b) Ta có: \(\dfrac{x+1}{19}+\dfrac{x+2}{18}+\dfrac{x+3}{17}+...+\dfrac{x+18}{2}+18=0\)
\(\Leftrightarrow\dfrac{x+1}{19}+1+\dfrac{x+2}{18}+1+\dfrac{x+3}{17}+1+...+\dfrac{x+18}{2}+1=0\)
\(\Leftrightarrow\dfrac{x+20}{19}+\dfrac{x+20}{18}+\dfrac{x+20}{17}+...+\dfrac{x+20}{2}=0\)
\(\Leftrightarrow\left(x+20\right)\left(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}\right)=0\)
mà \(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}>0\)
nên x+20=0
hay x=-20
Vậy: x=-20
Đặt: x^2 + x = t
Ta có phương trình: ( t- 5 ) ( t + 4 ) = -18
<=> t^2 -t - 2 = 0
<=> ( t^2 +t ) + ( -2t - 2 ) = 0
<=> t ( t + 1 ) -2 ( t + 1 ) = 0
<=> ( t + 1 ) ( t - 2 ) = 0
<=> t = -1 hoặc t = 2
Với t = -1 ta có: x^2 + x = -1 <=> x^2 + x + 1 = 0 <=> ( x + 1/2 )^2 +3/4 = 0 phương trình vô nghiệm
Với t = 2 ta có: x^2 +x - 2 = 0 <=> x^2 -x + 2x - 2 = 0
<=> x ( x - 1) + 2 (x - 1) = 0
<=> ( x + 2 ) ( x - 1) = 0
<=> x = -2 hoặc x = 1
vậy x = -2 hoặc x = 1.
\(\left(x^2+x-5\right)\left(x^2+x+4\right)=-18\)
Đặt \(x^2+x+4=t\left(t>0\right)\)
\(\Rightarrow\left(x^2+x+4-9\right)\left(x^2+x+4\right)=-18\)
\(\Leftrightarrow\left(t-9\right)t=-18\)
\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+x+4=6\\x^2+x+4=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\\x^2+x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)