Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
1.
$(x-2)(x-5)=(x-3)(x-4)$
$\Leftrightarrow x^2-7x+10=x^2-7x+12$
$\Leftrightarrow 10=12$ (vô lý)
Vậy pt vô nghiệm.
2.
$(x-7)(x+7)+x^2-2=2(x^2+5)$
$\Leftrightarrow x^2-49+x^2-2=2x^2+10$
$\Leftrightarrow 2x^2-51=2x^2+10$
$\Leftrightarrow -51=10$ (vô lý)
Vậy pt vô nghiệm.
3.
$(x-1)^2+(x+3)^2=2(x-2)(x+2)$
$\Leftrightarrow (x^2-2x+1)+(x^2+6x+9)=2(x^2-4)$
$\Leftrightarrow 2x^2+4x+10=2x^2-8$
$\Leftrightarrow 4x+10=-8$
$\Leftrightarrow 4x=-18$
$\Leftrightarrow x=-4,5$
4.
$(x+1)^2=(x+3)(x-2)$
$\Leftrightarrow x^2+2x+1=x^2+x-6$
$\Leftrightarrow x=-7$
a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18
= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18
= 2(1 - 2x) - 18 = 0
= 2 - 4x - 18 = 0
= -16 - 4x = 0
= -4x = 16
= x = \(\dfrac{16}{-4}=-4\)
b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0
= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0
= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0
= 12x - 5 = 0
= 12x = 5
= x = \(\dfrac{5}{12}\)
c) (x - 5)2 - x(x - 4) = 9
= x2 - 10x + 25 - x2 + 4x - 9 = 0
= -6x + 16 = 0
= -6x = -16
= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)
d) (x - 5)2 + (x - 4)(1 - x)
= x2 - 10x + 25 + 5x - x2 - 4 = 0
= -5x + 21 = 0
= -5x = -21
= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\)
Chúc bạn học tốt
ĐKXĐ:\(x\ne\pm2\)
\(\dfrac{6}{x-2}+\dfrac{5}{x+2}=\dfrac{x-18}{x^2-4}\\ \Leftrightarrow\dfrac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x-18}{\left(x+2\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{6x+12+5x-10-x+18}{\left(x+2\right)\left(x-2\right)}=0\\ \Rightarrow10x+20=0\\ \Leftrightarrow x=-2\left(ktm\right)\)
Tự chép đề bài nhé bạn
a) 5x + 10x2 - 3x2 - 54x = 0
\(\Rightarrow\) 7x2 - 49x = 0
\(\Leftrightarrow\) 7x( x - 7 ) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}7x=0\\x-7=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
Vậy ....
b) x2 + 5x + 6 - x2 - 3x - 10 = 0
\(\Leftrightarrow\) 2x - 4 = 0
\(\Leftrightarrow\) 2x = 4
\(\Leftrightarrow\) x = 2
Vậy .....
a) 5x(1-2x) - 3x(x+18) = 0
\(\Leftrightarrow5x-10x^2-3x^2-54x=0\)
\(\Leftrightarrow-13x^2-49x=0\)
\(\Leftrightarrow-x\left(13x+49\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\13x+49=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-49}{13}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{0;\frac{-49}{13}\right\}\)
b) \(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=0\)
\(\Leftrightarrow2x+16=0\)
\(\Leftrightarrow x=-8\)
Vậy phương trình có nghiệm x = -8
c) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow3x^2-3x^2-12x+17x-2-20=0\)
\(\Leftrightarrow5x-22=0\)
\(\Leftrightarrow x=\frac{22}{5}=4,4\)
Vậy phương trình có nghiệm x = 4,4.
Đặt: x^2 + x = t
Ta có phương trình: ( t- 5 ) ( t + 4 ) = -18
<=> t^2 -t - 2 = 0
<=> ( t^2 +t ) + ( -2t - 2 ) = 0
<=> t ( t + 1 ) -2 ( t + 1 ) = 0
<=> ( t + 1 ) ( t - 2 ) = 0
<=> t = -1 hoặc t = 2
Với t = -1 ta có: x^2 + x = -1 <=> x^2 + x + 1 = 0 <=> ( x + 1/2 )^2 +3/4 = 0 phương trình vô nghiệm
Với t = 2 ta có: x^2 +x - 2 = 0 <=> x^2 -x + 2x - 2 = 0
<=> x ( x - 1) + 2 (x - 1) = 0
<=> ( x + 2 ) ( x - 1) = 0
<=> x = -2 hoặc x = 1
vậy x = -2 hoặc x = 1.
\(\left(x^2+x-5\right)\left(x^2+x+4\right)=-18\)
Đặt \(x^2+x+4=t\left(t>0\right)\)
\(\Rightarrow\left(x^2+x+4-9\right)\left(x^2+x+4\right)=-18\)
\(\Leftrightarrow\left(t-9\right)t=-18\)
\(\Leftrightarrow t^2-9t+18=0\Leftrightarrow\orbr{\begin{cases}t=6\\t=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+x+4=6\\x^2+x+4=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+x-2=0\\x^2+x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)