Cho a,b,c,d \(\in\left[0,1\right]\). CMR \(0\le a+b+c+d-ab-bc-cd-da\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}x=\frac{a+b}{2}\\y=\frac{c+d}{2}\end{cases}}\)
Ta có:
\(\left(1-a\right)\left(1-b\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Rightarrow ab+bc+ca+1\ge bc+ca+a+b=\left(a+b\right)\left(c+1\right)\ge\left(a+b\right)\left(c+d\right)\left(1\right)\)
Tương tự ta có:
\(bc+cd+db+1\ge\left(a+b\right)\left(b+d\right)\left(2\right)\)
\(cd+da+ac+1\ge\left(a+b\right)\left(c+d\right)\left(3\right)\)
\(da+ab+bd+1\ge\left(a+b\right)\left(c+d\right)\left(4\right)\)
Từ (1), (2), (3), (4) ta có:
\(VT\le\frac{a+b+c+d}{\left(a+b\right)\left(c+d\right)}=\frac{x+y}{2xy}\le\frac{xy+1}{2xy}\left(@\right)\)
Ta lại có:
\(VP\ge\frac{3}{4}+\frac{1}{4x^2y^2}\left(@@\right)\)
Từ \(\left(@\right),\left(@@\right)\)cái cần chứng minh trở thành.
\(\frac{xy+1}{2xy}\le\frac{3}{4}+\frac{1}{4x^2y^2}\)
\(\Leftrightarrow\left(xy-1\right)^2\ge0\)(đúng)
Vậy ta có ĐPCM.
\(\left(a+b+c+d\right)^2-4\left(ab+bc+cd+da\right)=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)-4\left(ab+bc+cd+da\right)\)
\(=a^2+b^2+c^2+d^2+2\left(-ab+ac-ad-bc+bd-cd\right)=\left(a-b+c-d\right)^2\ge0\)
=> dpcm