K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2020

\(\sqrt{3000}.\sqrt{9000}+\sqrt{x}=30000\)

\(5196,15242271+\sqrt{x}=30000\)

\(\sqrt{x}=30000-5196,15242271\)

\(\sqrt{x}=24803,8475773\)

\(x=155,18971479225033\)

\(Vậy\)\(x=155,18971479225033\)

26 tháng 8 2017

Đặt √x = t, x ≥ 0 => t ≥ 0.

Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)

Nếu t = 0, t = 1, f(t) = 1 >0

Với 0 < t <1,      f(t) = t8 + (t2 - t5)+1 - t 

       t8 > 0, 1 - t > 0, t2 - t= t3(1 – t) > 0. Suy ra f(t) > 0.

Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0

Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0

\(\Leftrightarrow2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}=x+y+z-6000\)

\(\Leftrightarrow z+y+z-2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}-6000=0\)

\(\Leftrightarrow\left(\left(\sqrt{x-2000}\right)^2-2\sqrt{x-2000}+1\right)+\left(\left(\sqrt{y-2001}\right)^2-2\sqrt{y-2001}+1\right)+\left(\left(\sqrt{z-2002}\right)^2-2\sqrt{z-2002}+1\right)=0\)\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)

\(\Leftrightarrow x=2001;y=2002;z=2003\)

16 tháng 9 2023

\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)

\(\Leftrightarrow x=\sqrt{5+\sqrt{13+x}}\) (\(x\ge0\))

\(\Leftrightarrow x^2=5+\sqrt{13+x}\)

\(\Leftrightarrow x^2-9=\sqrt{13+x}-4\)

\(\Leftrightarrow\left(x-3\right).\left(x+3\right)=\dfrac{x-3}{\sqrt{13+x}+4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=\dfrac{1}{\sqrt{x+13}+4}\left(∗\right)\end{matrix}\right.\)

Xét (*) ta có VT \(\ge3\) (1)

mà \(VP=\dfrac{1}{\sqrt{x+13}+4}\le\dfrac{1}{4}\) (2)

Từ (1) và (2) dễ thấy (*) vô nghiệm 

Hay x = 3

 

 

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Lời giải:

ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}-\sqrt{(x-1)-2\sqrt{x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}-\sqrt{(\sqrt{x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{x-1}+1|-|\sqrt{x-1}-1|=2$
Nếu $2\geq x\geq 1$ thì:

$\sqrt{x-1}+1+(1-\sqrt{x-1})=2$
$\Leftrightarrow 2=2$ (luôn đúng)

Nếu $x>2$ thì: $\sqrt{x-1}+1+(\sqrt{x-1}-1)=2$
$\Leftrightarrow 2\sqrt{x-1}=2$
$\Leftrightarrow x-1=1$

$\Leftrihgtarrow x=2$ (loại)

Vậy $2\geq x\geq 1$

$

14 tháng 8 2021

Mình sửa lại đề tí:

\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

NV
14 tháng 8 2021

ĐKXĐ: \(x\ge1\)

\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

\(\Leftrightarrow\sqrt{x-1}-\left|\sqrt{x-1}-1\right|=1\)

TH1: \(x\ge2\Rightarrow\sqrt{x-1}-1\ge0\) pt trở thành:

\(\sqrt{x-1}-\left(\sqrt{x-1}-1\right)=1\) (luôn đúng)

TH2: \(1\le x< 2\)

\(\Rightarrow\sqrt{x-1}-\left(1-\sqrt{x-1}\right)=1\)

\(\Leftrightarrow2\sqrt{x-1}=2\Rightarrow x=2\) (ktm)

Vậy nghiệm của pt là \(x\ge2\)

4 tháng 8 2021

Giúp mình với 

NV
4 tháng 8 2021

Nếu chưa quen giải toán căn thức, em tìm ĐKXĐ cho x, rồi đặt \(\sqrt{x}=t\ge0\Rightarrow x=t^2\) rồi thế vào giải là nó ra 1 pt bình thường theo biến t thôi