Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân cả 2 vế với 2 ta có
\(2\sqrt{x-2}+2\sqrt{y+2000}+2\sqrt{z-2001}=x+y+z\)
\(\left(x-2\right)-2\sqrt{x-2}+1+\left(y+2000\right)-2\sqrt{y+2000}+1+\left(z-2001\right)-2\sqrt{z-2001}+1=0\)
\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2000}-1\right)^2+\left(\sqrt{z-2001}-1\right)^2=0\)
cho cả 3 cái =0 thì giả ra x=3 y=-1999 z=2002
how about the technology in the future Which things will happen Draw a picture about the technology in the future Note You can draw everything but they are different from now Please help me
hình như...
b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)
Kl: ptvn
Đặt √x = t, x ≥ 0 => t ≥ 0.
Vế trái trở thành: t8 – t5 + t2 – t + 1 = f(t)
Nếu t = 0, t = 1, f(t) = 1 >0
Với 0 < t <1, f(t) = t8 + (t2 - t5)+1 - t
t8 > 0, 1 - t > 0, t2 - t5 = t3(1 – t) > 0. Suy ra f(t) > 0.
Với t > 1 thì f(t) = t5(t3 – 1) + t(t - 1) + 1 > 0
Vậy f(t) > 0 ∀t ≥ 0. Suy ra: x4 - √x5 + x - √x + 1 > 0, ∀x ≥ 0
\(\Leftrightarrow2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}=x+y+z-6000\)
\(\Leftrightarrow z+y+z-2\sqrt{x-2000}+2\sqrt{y-2001}+2\sqrt{z-2002}-6000=0\)
\(\Leftrightarrow\left(\left(\sqrt{x-2000}\right)^2-2\sqrt{x-2000}+1\right)+\left(\left(\sqrt{y-2001}\right)^2-2\sqrt{y-2001}+1\right)+\left(\left(\sqrt{z-2002}\right)^2-2\sqrt{z-2002}+1\right)=0\)\(\Leftrightarrow\left(\sqrt{x-2000}-1\right)^2+\left(\sqrt{y-2001}-1\right)^2+\left(\sqrt{z-2002}-1\right)^2=0\)
\(\Leftrightarrow x=2001;y=2002;z=2003\)
e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)
Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành
\(2a=-a^2+8\)
\(\Leftrightarrow a^2+2a-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)
\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)
\(\Leftrightarrow-x^2+8x-12=4\)
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)
Điều kiện : \(x\ge2;y\ge-2009;z\ge2010;x+y+z\ge0\)
PT <=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}=x+y+z\)
Áp dụng B ĐT Cô- si với 2 số dương a; b : \(2\sqrt{ab}\le a+b\) ta có:
\(2.\sqrt{x-2}\le x-2+1=x-1\)
\(2.\sqrt{y+2009}\le y+2009+1=y+2010\)
\(2.\sqrt{z-1010}\le z-2010+1=z-2009\)
=> \(2.\sqrt{x-2}+2.\sqrt{y+2009}+2.\sqrt{z-2010}\le x-1+y+2010+z-2009=x+y+z\)
Dấu "=" xảy ra <=> x - 2 = 1 ; y + 2009 = 1; z - 2010 = 1
=> x = 3; y = -2008; z = 2011 là nghiệm của PT
x;y;z là nghiệm của PT: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\left(1\right)\)=> đk: x >=0; y >= 1 ; z >= 2.
Ta có:
- \(\left(\sqrt{x}-1\right)^2\ge0\Rightarrow x-2\sqrt{x}+1\ge0\Rightarrow\sqrt{x}\le\frac{x+1}{2}\)(a)
- Tương tự: \(\sqrt{y-1}\le\frac{y-1+1}{2}=\frac{y}{2}\)(b)
- và: \(\sqrt{z-2}\le\frac{z-2+1}{2}=\frac{z-1}{2}\)(c)
- Do đó: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+1+y+z-1}{2}=\frac{x+y+z}{2}\)hay VT(1) <= VP(1) với mọi x;y;z.
Vậy để (1) thỏa mãn thì dấu "=" xảy ra hay các BĐT (a); (b); (c) xảy ra. Khi đó, x = 1; y = 2; z = 3.